Modern nutritional approaches to mitigating enteric methane emissions in ruminants: A review
Keywords:
Enteric CH4, nutritional strategie, methane inhibitors, insect meal, nanotechnology, feed additivesAbstract
Sustainable livestock production increased public concern towards reducing greenhouse gases. The emission of enteric methane from ruminants, if not well managed, contributes to a significant loss of energy consumed and a marked environmental challenge. Methane has <80 times higher global warming potential than CO2. Enteric methane contributes by <40% of agricultural emissions and 13-19% of global methane emissions. Furthermore, the increased demand for animal protein sources, especially in developing countries, highlights the pressure on greenhouse gas emissions. Therefore, the search for a methane mitigating strategy is a continuous series and a hot topic in animal nutrition laboratories. There are several mitigating nutritional strategies with varying mitigating potentials from 10 to 90% associated with or without digestion or growth complications. These solutions include the use of new ingredients such as insect meal, modulating the quality of food, the inclusion of lipids, and increased concentrate: roughage ration, which decreased CH4 approximately by 18%, 30%, 6% and 50% in the best situations. Furthermore, feed additives have considerable effects on CH4 emissions by inhibiting methanogenesis or competing with substrates for methanogens, such as nanoengineered or nanoencapsulated materials, CH4 inhibitors (statins, bromochloromethan, and 3-NOP) that could inhibit CH4 production by 90%. Several phytobiotic feed additives, including tannins, saponins, and essential oils, have moderate CH4 inhibition effect up to 30%. Seaweed was reported to have nearly complete inhibition of CH4 of the Asparagopsis, Ascophyllum, Dictyota and Rhodophyta genes in vitro or in vivo evaluation. However, the application of these solutions still faces some barriers, including cost, availability, efficacy across production systems, and potential impacts on animal productivity. This review evaluates the mechanisms, effectiveness, and nutritional implications of these nutritional strategies, with particular attention to their applicability in different ruminant production systems (in vivo and in vitro models) for more sustainable production.
References
Abeyta, M., Horst, E., Goetz, B., Rodriguez-Jimenez, S., Mayorga, E., Al-Qaisi, M., & Baumgard, L. (2023). Effects of hindgut acidosis on inflammation, metabolism, and productivity in lactating dairy cows fed a high-fiber diet. Journal of dairy Science, 106(4), 2879-2889. https://doi.org/10.3168/jds.2022-22680.
Ábrego-García, A., Medina-Mendoza, G. G., & Miranda-Romero, L. A. (2024). The Anti-Methanogenic Activity of Lovastatin in Batch Cultures Using Rumen Inoculum from Sheep, Goats, and Cows. Fermentation, 10(8), 393. https://doi.org/10.3390/fermentation10080393.
Adejoro, F. A., Hassen, A., & Akanmu, A. M. (2019). Effect of lipid-encapsulated acacia tannin extract on feed intake, nutrient digestibility and methane emission in sheep. Animals, 9(11), 863. https://doi.org/10.3390/ani9110863.
Ahmed, E., Fukuma, N., Hanada, M., & Nishida, T. (2021). Insects as novel ruminant feed and a potential mitigation strategy for methane emissions. Animals, 11(9), 2648. https://doi.org/10.3390/ani11092648.
Al-Azzawi, M., Bowtell, L., Hancock, K., & Preston, S. (2021). Addition of activated carbon into a cattle diet to mitigate GHG emissions and improve production. Sustainability, 13(15), 8254. https://doi.org/10.3390/su13158254.
Animut, G., Puchala, R., Goetsch, A., Patra, A., Sahlu, T., Varel, V., & Wells, J. (2008). Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Animal Feed Science and Technology, 144(3-4), 212-227. https://doi.org/10.1016/j.anifeedsci.2007.10.014.
Atzori, A., Porcu, M., Fulghesu, F., Ledda, A., & Correddu, F. (2023). Evaluation of a dietary blend of essential oils and polyphenols on methane emission by ewes. Animal Production Science, 63(15), 1483-1493. https://doi.org/10.1071/AN23070.
Ban, Y., & Guan, L. L. (2021). Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. Journal of animal science and biotechnology, 12(1), 109. https://doi.org/10.1186/s40104-021-00630-x.
Bannink, A., Warner, D., Hatew, B., Ellis, J., & Dijkstra, J. (2016). Quantifying effects of grassland management on enteric methane emission. Animal Production Science, 56(3), 409-416. https://doi.org/10.1071/AN15594.
Bayat, A., & Shingfield, K. J. (2012). Overview of nutritional strategies to lower enteric methane emissions in ruminants. Suomen Maataloustieteellisen Seuran Tiedote(28), 1-7. https://doi.org/10.33354/smst.75433.
Beck, M., Thompson, L., Williams, G., Place, S., Gunter, S., & Reuter, R. (2019). Fat supplements differing in physical form improve performance but divergently influence methane emissions of grazing beef cattle. Animal Feed Science and Technology, 254, 114210. https://doi.org/10.1016/j.anifeedsci.2019.114210.
Bokharaeian, M., Ghoorchi, T., Toghdory, A., & Esfahani, I. J. (2023). The dose-dependent role of sage, clove, and pine essential oils in modulating ruminal fermentation and biohydrogenation of polyunsaturated fatty acids: a promising strategy to reduce methane emissions and enhance the nutritional profile of ruminant products. Applied Sciences, 13(20), 11605. https://doi.org/10.3390/app132011605.
Botia-Carreño, E. O., Elghandour, M. M., Khusro, A., Velazquez, D. R., Kreuzer-Redmer, S., & Salem, A. Z. (2024). Nano-encapsulated Yucca extract as feed additives: Ruminal greenhouse gas emissions of three forages. AMB Express, 14(1), 142-158. https://doi.org/10.1186/s13568-024-01803-3.
Boudra, H., Rathahao-Paris, E., Hohenester, U., Traikia, M., Gauthier, M., & Morgavi, D. (2024). Antimethanogenic activity of Monascus metabolites in the rumen revealed by the concentration of statins, their diversity and the presence of acid forms. Animal Feed Science and Technology, 314, 116013. https://doi.org/10.1016/j.anifeedsci.2024.116013.
Caro, D., Kebreab, E., & Mitloehner, F. M. (2016). Mitigation of enteric methane emissions from global livestock systems through nutrition strategies. Climatic Change, 137, 467-480. https://doi.org/10.1007/s10584-016-1686-1.
Carvalho, I. P. C. d., Fiorentini, G., Berndt, A., Castagnino, P. d. S., Messana, J. D., Frighetto, R. T. S., Reis, R. A., & Berchielli, T. T. (2016). Performance and methane emissions of Nellore steers grazing tropical pasture supplemented with lipid sources. Revista Brasileira de Zootecnia, 45(12), 760-767. https://doi.org/10.1590/S1806-92902016001200005.
Castillo-González, A., Burrola-Barraza, M. E., Domínguez-Viveros, J., & Chavez-Martinez, A. (2014). Rumen microorganisms and fermentation. Archivos de medicina veterinaria, 46(3), 349-361.
Cersosimo, L. M., & Wright, A.-D. G. (2015). Rumen methanogens. In A. K. Puniya, R. Singh, & D. N. Kamra (Eds.), Rumen microbiology: From evolution to revolution (pp. 143-150). Springer.
Chagas, J. C., Ramin, M., & Krizsan, S. J. (2019). In vitro evaluation of different dietary methane mitigation strategies. Animals, 9(12), 1120. https://doi.org/10.3390/ani9121120.
Chiariotti, A. (2023). Rumen environmental and nutritional strategies to mitigate emissions from livestock. Cuban Journal of Agricultural Science, 57. https://orcid.org/0000-0003-0828-4610.
Choi, Y., Lee, S. J., Kim, H. S., Eom, J. S., Jo, S. U., Guan, L. L., Seo, J., Lee, Y., Song, T., & Lee, S. S. (2023). Assessment of the Pinus koraiensis cone essential oil on methane production and microbial abundance using in vitro evaluation system. Animal Feed Science and Technology, 299, 115640. https://doi.org/10.1016/j.anifeedsci.2023.115640.
Cristobal-Carballo, O., McCoard, S. A., Cookson, A. L., Ganesh, S., Lowe, K., Laven, R. A., & Muetzel, S. (2021). Effect of methane inhibitors on ruminal microbiota during early life and its relationship with ruminal metabolism and growth in calves. Frontiers in microbiology, 12, 710914. https://doi.org/10.3389/fmicb.2021.710914.
Darabighane, B., Tapio, I., Ventto, L., Kairenius, P., Stefański, T., Leskinen, H., Shingfield, K. J., Vilkki, J., & Bayat, A.-R. (2021). Effects of starch level and a mixture of sunflower and fish oils on nutrient intake and digestibility, rumen fermentation, and ruminal methane emissions in dairy cows. Animals, 11(5), 1310. https://doi.org/10.3390/ani11051310.
De Jesús, J. A. C., Elghandour, M. M. M. Y., Adegbeye, M. J., Aguirre, D. L., Roque-Jimenez, J. A., Lackner, M., & Salem, A. Z. M. (2024). Nano-encapsulation of essential amino acids: ruminal methane, carbon monoxide, hydrogen sulfide and fermentation. AMB Express, 14(1), 109. https://doi.org/10.1186/s13568-024-01767-4.
Dillon, J. A., Stackhouse-Lawson, K. R., Thoma, G. J., Gunter, S. A., Rotz, C. A., Kebreab, E., Riley, D. G., Tedeschi, L. O., Villalba, J., & Mitloehner, F. (2021). Current state of enteric methane and the carbon footprint of beef and dairy cattle in the United States. Animal Frontiers, 11(4), 57-68. https://doi.org/10.1093/af/vfab043.
Duin, E. C., Wagner, T., Shima, S., Prakash, D., Cronin, B., Yáñez-Ruiz, D. R., Duval, S., Rümbeli, R., Stemmler, R. T., & Thauer, R. K. (2016). Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proceedings of the National Academy of Sciences, 113(22), 6172-6177. https://doi.org/10.1073/pnas.1600298113.
Duthie, C., Troy, S., Hyslop, J., Ross, D., Roehe, R., & Rooke, J. (2018). The effect of dietary addition of nitrate or increase in lipid concentrations, alone or in combination, on performance and methane emissions of beef cattle. animal, 12, 280-287. https://doi.org/10.1017/S175173111700146X.
El-Nile, A., Elazab, M., El-Zaiat, H., El-Azrak, K. E.-D., Elkomy, A., Sallam, S., & Soltan, Y. (2021). In vitro and in vivo assessment of dietary supplementation of both natural or nano-zeolite in goat diets: Effects on ruminal fermentation and nutrients digestibility. Animals, 11(8), 2215. https://doi.org/10.3390/ani11082215.
Elmhadi, M. E., Ali, D. K., Khogali, M. K., & Wang, H. (2022). Subacute ruminal acidosis in dairy herds: Microbiological and nutritional causes, consequences, and prevention strategies. Animal Nutrition, 10, 148-155. https://doi.org/10.1016/j.aninu.2021.12.008.
Foggi, G., Terranova, M., Conte, G., Mantino, A., Amelchanka, S. L., Kreuzer, M., & Mele, M. (2022). In vitro screening of the ruminal methane and ammonia mitigating potential of mixtures of either chestnut or quebracho tannins with blends of essential oils as feed additives. Italian Journal of Animal Science, 21(1), 1520-1532. https://doi.org/10.1080/1828051X.2022.2130832.
Garba, A. M., & Fırıncıoğlu, S. Y. (2023). Role of Encapsulation Nutrients for Improvement of Ruminant Performance and Ruminant Derived–Products. Eurasian Journal of Agricultural Research, 7(2), 109-126.
Ghassemi Nejad, J., Ju, M.-S., Jo, J.-H., Oh, K.-H., Lee, Y.-S., Lee, S.-D., Kim, E.-J., Roh, S., & Lee, H.-G. (2024). Advances in methane emission estimation in livestock: A review of data collection methods, model development and the role of AI technologies. Animals, 14(3), 435. https://doi.org/10.3390/ani14030435.
Glasson, C. R., Kinley, R. D., de Nys, R., King, N., Adams, S. L., Packer, M. A., Svenson, J., Eason, C. T., & Magnusson, M. (2022). Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Research, 64, 102673. https://doi.org/10.1016/j.algal.2022.102673.
Gleason, C. B. (2021). Improving the Understanding of Factors Driving Rumen Fermentation Institute and State University]. Blacksburg, Virginia.
Harmon, D., Yamka, R., & Elam, N. (2004). Factors affecting intestinal starch digestion in ruminants: A review. Canadian Journal of Animal Science, 84(3), 309-318. https://doi.org/10.4141/A03-077.
Hatew, B. (2015). Low emission feed: opportunities to mitigate enteric methane production of dairy cows Wageningen University and Research].
Hatew, B., Bannink, A., Van Laar, H., De Jonge, L., & Dijkstra, J. (2016). Increasing harvest maturity of whole-plant corn silage reduces methane emission of lactating dairy cows. Journal of dairy Science, 99(1), 354-368. https://doi.org/10.3168/jds.2015-10047.
Hatew, B., Cone, J., Pellikaan, W., Podesta, S., Bannink, A., Hendriks, W., & Dijkstra, J. (2015). Relationship between in vitro and in vivo methane production measured simultaneously with different dietary starch sources and starch levels in dairy cattle. Animal Feed Science and Technology, 202, 20-31. https://doi.org/10.1016/j.anifeedsci.2015.01.012.
Hatew, B., Podesta, S., Van Laar, H., Pellikaan, W., Ellis, J., Dijkstra, J., & Bannink, A. (2015). Effects of dietary starch content and rate of fermentation on methane production in lactating dairy cows. Journal of dairy Science, 98(1), 486-499. https://doi.org/10.3168/jds.2014-8427.
Honan, M., Feng, X., Tricarico, J., & Kebreab, E. (2021). Feed additives as a strategic approach to reduce enteric methane production in cattle: Modes of action, effectiveness and safety. Animal Production Science, 62, 14. https://doi.org/10.1071/AN20295.
Hong, J., & Kim, Y. Y. (2022). Insect as feed ingredients for pigs. Animal bioscience, 35(2), 347. https://doi.org/10.5713/ab.21.0475.
IPCC. (2021). Summary for policymakers,” in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Joch, M., Vadroňová, M., Výborná, A., & Jochová, K. (2022). Inhibition of in vitro rumen methane production by three statins. Annals of Animal Science, 22(1), 271-282. https://doi.org/10.2478/aoas-2021-0022.
Johnson KA, & DE., J. (1995). Methane emissions from cattle. Journal of Animal Science, 73, 2483-2492. https://doi.org/10.2527/1995.7382483x.
Jonker, A., Lowe, K., Kittelmann, S., Janssen, P., Ledgard, S., & Pacheco, D. (2016). Methane emissions changed nonlinearly with graded substitution of alfalfa silage with corn silage and corn grain in the diet of sheep and relation with rumen fermentation characteristics in vivo and in vitro. Journal of Animal Science, 94(8), 3464-3475. https://doi.org/10.2527/jas.2015-9912.
Jonker, A., Muetzel, S., Molano, G., & Pacheco, D. (2015). Effect of fresh pasture forage quality, feeding level and supplementation on methane emissions from growing beef cattle. Animal Production Science, 56(10), 1714-1721. https://doi.org/10.1071/AN15022.
Kardaya, D., Sudrajat, D., Wahyuni, D., Gopar, R., & Pramartaa, I. (2025). Rumen metrics in sheep fed diets enriched with urea-impregnated nano-zeolites. J. Anim. Health Prod, 13(2), 223-234. https://dx.doi.org/10.17582/journal.jahp/2025/13.2.223.234.
Khoa, M., Quang, N., Thang, T., Phung, T., & Kien, T. (2018). Effect of tannin in green tea by-product in combination with bio-char supplemented into basal beef cattle diet on nutrient digestibility, methane production and animal performance. Open Journal of Animal Sciences, 8(03), 206. https://doi.org/Open10.4236/ojas.2018.83015.
Kim, S.-H., Mamuad, L. L., Kim, E.-J., Sung, H.-G., Bae, G.-S., Cho, K.-K., Lee, C., & Lee, S.-S. (2018). Effect of different concentrate diet levels on rumen fluid inoculum used for determination of in vitro rumen fermentation, methane concentration, and methanogen abundance and diversity. Italian Journal of Animal Science, 17(2), 359-367. https://doi.org/10.1080/1828051X.2017.1394170.
Leahy, S., Clark, H., & Reisinger, A. (2020). Challenges and prospects for agricultural greenhouse gas mitigation pathways consistent with the Paris agreement. Front. Sustain. Food Syst., 4, 69. https:/doi.org/10.3389/fsufs.2020.00069.
Lee, S. J., Shin, N. H., Jeong, J. S., Kim, E. T., Lee, S. K., & Lee, S. S. (2017). Effect of Rhodophyta extracts on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations. Asian-Australasian journal of animal sciences, 31(1), 54-62. https://doi.org/0.5713/ajas.17.0620.
Li, Q. S., Wang, R., Ma, Z. Y., Zhang, X. M., Jiao, J. Z., Zhang, Z. G., Ungerfeld, E. M., Le Yi, K., Zhang, B. Z., & Long, L. (2022). Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminants. The ISME Journal, 16(11), 2535-2546. https://doi.org/10.1038/s41396-022-01294-9.
Liu, C., Meng, Q., Chen, Y., Xu, M., Shen, M., Gao, R., & Gan, S. (2017). Role of age-related shifts in rumen bacteria and methanogens in methane production in cattle. Frontiers in microbiology, 8, 1563. https://doi.org/10.3389/fmicb.2017.01563.
Liu, Y., & WB., W. (2008). Metabolic phylogenetic and ecological diversity of the methanogenic archaea. Annals of the New York Academy of Sciences, 1125, 171-189. https://doi.org/10.1196/annals.1419.019.
Machado, L., Magnusson, M., Paul, N. A., de Nys, R., & Tomkins, N. (2014). Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS One, 9(1), e85289. https://doi.org/10.1371/journal.pone.0085289.
Macome, F., Pellikaan, W. F., Hendriks, W., Dijkstra, J., Hatew, B., Schonewille, J., & Cone, J. W. (2017). In vitro gas and methane production of silages from whole-plant corn harvested at 4 different stages of maturity and a comparison with in vivo methane production. Journal of dairy Science, 100(11), 8895-8905. https://doi.org/10.3168/jds.2017-12953.
Mahler, G. J., Esch, M. B., Tako, E., Southard, T. L., Archer, S. D., Glahn, R. P., & Shuler, M. L. (2012). Oral exposure to polystyrene nanoparticles affects iron absorption. Nature nanotechnology, 7(4), 264-271. https://doi.org/10.1038/nnano.2012.3.
Maia, M., Fonseca, A., Oliveira, H., Mendonça, C., & Cabrita, A. (2016). The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Sci. Rep., 6, 32321. https://doi.org/10.1038/srep32321.
Malik, P., Trivedi, S., Kolte, A., Sejian, V., Bhatta, R., & Rahman, H. (2022). Diversity of rumen microbiota using metagenome sequencing and methane yield in Indian sheep fed on straw and concentrate diet. Saudi Journal of Biological Sciences, 29(8), 103345. https://doi.org/10.1016/j.sjbs.2022.103345.
Martin, C., Morgavi, D. P., & Doreau, M. (2010). Methane mitigation in ruminants: from microbe to the farm scale. animal, 4(3), 351-365. https://doi.org/10.1017/S1751731109990620.
Matsui, H., Tajima, K., & Itabashi, H. (2020). Diversity of prokaryotes in the rumen of steers fed a diet supplemented with or without bromochloromethane, an anti-methanogenic compound. Japan Agricultural Research Quarterly: JARQ, 54(2), 179-183. https://doi.org/10.6090/jarq.54.179.
Matthews, H. D., & Wynes, S. (2022). Current global efforts are insufficient to limit warming to 1.5 C. Science, 376(6600), 1404-1409. https://doi.org/10.1126/science.abo3378.
Melgar, A., Lage, C., Nedelkov, K., Räisänen, S., Stefenoni, H., Fetter, M., Chen, X., Oh, J., Duval, S., & Kindermann, M. (2021). Enteric methane emission, milk production, and composition of dairy cows fed 3-nitrooxypropanol. Journal of dairy Science, 104(1), 357-366. https://doi.org/10.3168/jds.2020-18908.
Morgavi, D. P., Forano, E., Martin, C., & Newbold, C. J. (2010). Microbial ecosystem and methanogenesis in ruminants. animal, 4(7), 1024-1036. https://doi.org/10.1017/S1751731110000546.
Muetzel, S., Hannaford, R., & Jonker, A. (2024). Effect of animal and diet parameters on methane emissions for pasture-fed cattle. Animal Production Science, 64(3), AN23049. https://doi.org/10.1071/AN23049.
Nadeem, A., & Sufyan, A. (2005). Partial replacement of forage fiber with non-forage fiber in ruminant ration: a review. Pakistan Journal of Vetrinary Science, 25(2), 92-97.
Newbold, C. J., & Rode, L. (2006). Dietary additives to control methanogenesis in the rumen. International congress series, https://doi.org/10.1016/j.ics.2006.03.047.
Olijhoek, D., Hellwing, A. L. F., Noel, S. J., Lund, P., Larsen, M., Weisbjerg, M. R., & Børsting, C. F. (2022). Feeding up to 91% concentrate to Holstein and Jersey dairy cows: Effects on enteric methane emission, rumen fermentation and bacterial community, digestibility, production, and feeding behavior. Journal of dairy Science, 105(12), 9523-9541. https://doi.org/10.3168/jds.2021-21676.
Olijhoek, D., Løvendahl, P., Lassen, J., Hellwing, A., Höglund, J., Weisbjerg, M., Noel, S., McLean, F., Højberg, O., & Lund, P. (2018). Methane production, rumen fermentation, and diet digestibility of Holstein and Jersey dairy cows being divergent in residual feed intake and fed at 2 forage-to-concentrate ratios. Journal of dairy Science, 101(11), 9926-9940. https://doi.org/10.3168/jds.2017-14278.
Owens, F. N., & Basalan, M. (2016). Ruminal fermentation. In D. Millen, M. De Beni Arrigoni, & R. Lauritano Pacheco (Eds.), Rumenology (pp. 63-102). Springer Nature. https://doi.org/10.1007/978-3-319-30533-2_3.
Palangi, V., Macit, M., Nadaroglu, H., & Taghizadeh, A. (2024). Effects of green-synthesized CuO and ZnO nanoparticles on ruminal mitigation of methane emission to the enhancement of the cleaner environment. Biomass Conversion and Biorefinery, 14(4), 5447-5455. https://doi.org/10.1007/s13399-022-02775-9.
Patra, A., Park, T., Kim, M., & Yu, Z. (2017). Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of animal science and biotechnology, 8, 1-18. https://doi.org/10.1186/s40104-017-0145-9.
Patra, A. K. (2014). A meta-analysis of the effect of dietary fat on enteric methane production, digestibility and rumen fermentation in sheep, and a comparison of these responses between cattle and sheep. Livestock Science, 162, 97-103. https://doi.org/10.1016/j.livsci.2014.01.007.
Perna Junior, F., Galbiatti Sandoval Nogueira, R., Ferreira Carvalho, R., Cuellar Orlandi Cassiano, E., & Mazza Rodrigues, P. H. (2023). Use of tannin extract as a strategy to reduce methane in Nellore and Holstein cattle and its effect on intake, digestibility, microbial efficiency and ruminal fermentation. Journal of Animal Physiology and Animal Nutrition, 107(1), 89-102. https://doi.org/10.1111/jpn.13702.
Phesatcha, B., Phesatcha, K., Matra, M., & Wanapat, M. (2023). Cricket (Gryllus bimaculatus) meal pellets as a protein supplement to improve feed efficiency, ruminal fermentation and microbial protein synthesis in Thai native beef cattle. Animal bioscience, 36(9), 1384. https://doi.org/10.5713/ab.23.0107.
Prachumchai, R., & Cherdthong, A. (2023). Black soldier fly larva oil in diets with roughage to concentrate ratios on fermentation characteristics, degradability, and methane generation. Animals, 13(15), 2416. https://doi.org/10.3390/ani13152416.
Ramin, M., & Huhtanen, P. (2013). Development of equations for predicting methane emissions from ruminants. Journal of dairy Science, 96(4), 2476-2493. https://doi.org/10.3168/jds.2012-6095.
Reisinger, A., Fuglestvedt, J. S., Pirani, A., Geden, O., Jones, C. D., Maharaj, S., Poloczanska, E. S., Morelli, A., Johansen, T. G., & Adler, C. (2025). Overshoot: A Conceptual Review of Exceeding and Returning to Global Warming of 1.5° C. Annual Review of Environment and Resources, 50. https://doi.org/10.1146/annurev-environ-111523-102029.
Renna, M., Coppa, M., Lussiana, C., Le Morvan, A., Gasco, L., & Maxin, G. (2022). Full-fat insect meals in ruminant nutrition: in vitro rumen fermentation characteristics and lipid biohydrogenation. Journal of animal science and biotechnology, 13(1), 138. https://doi.org/10.1186/s40104-022-00792-2.
Riazi, H., Rezaei, J., & Rouzbehan, Y. (2019). Effects of supplementary nano-ZnO on in vitro ruminal fermentation, methane release, antioxidants, and microbial biomass. Turkish Journal of Veterinary & Animal Sciences, 43(6), 737-746. https://doi.org/10.3906/vet-1905-48.
Ritchie, H. (2020). Sector by sector: where do global greenhouse gas emissions come from?
Rofiq, M., Negara, W., Martono, S., Gopar, R., & Boga, M. (2021). Potential effect of some essential oils on rumen methane reduction and digestibility by in vitro incubation technique. IOP Conference Series: Earth and Environmental Science,
Roque, B. M., Brooke, C. G., Ladau, J., Polley, T., Marsh, L. J., Najafi, N., Pandey, P., Singh, L., Kinley, R., & Salwen, J. K. (2019). Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage. Animal Microbiome, 1, 1-14. https://doi.org/10.1186/s42523-019-0004-4.
Roque, B. M., Salwen, J. K., Kinley, R., & Kebreab, E. (2019). Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. Journal of Cleaner Production, 234, 132-138. https://doi.org/10.1016/j.jclepro.2019.06.193.
Sarker, N. C., Keomanivong, F., Borhan, M., Rahman, S., & Swanson, K. (2018). In vitro evaluation of nano zinc oxide (nZnO) on mitigation of gaseous emissions. Journal of Animal Science and Technology, 60, 1-8. https://doi.org/10.1186/s40781-018-0185-5.
Şevket, E., & KARSLI, M. A. (2024). Determinating the relationship between starch level and acidosis in high starch containing diets in lambs. Large Animal Review, 30(3), 137-144. https://orcid.org/0000-0002-3081-9450.
Shilwant, S., Hundal, J. S., Singla, M., & Patra, A. K. (2023). Ruminal fermentation and methane production in vitro, milk production, nutrient utilization, blood profile, and immune responses of lactating goats fed polyphenolic and saponin-rich plant extracts. Environmental Science and Pollution Research, 30(4), 10901-10913. https://doi.org/10.1007/s11356-022-22931-y.
Shinkai, T., Enishi, O., Mitsumori, M., Higuchi, K., Kobayashi, Y., Takenaka, A., Nagashima, K., & Mochizuki, M. (2012). Mitigation of methane production from cattle by feeding cashew nut shell liquid. Journal of dairy Science, 95(9), 5308-5316. https://doi.org/10.3168/jds.2012-5554.
Sirohi, S., Pandey, N., Singh, B., & Puniya, A. (2010). Rumen methanogens: a review. Indian journal of microbiology, 50, 253-262. https://doi.org/10.1007/s12088-010-0061-6.
Soliva, C. R., Meile, L., Cieślak, A., Kreuzer, M., & Machmüller, A. (2004). Rumen simulation technique study on the interactions of dietary lauric and myristic acid supplementation in suppressing ruminal methanogenesis. British Journal of Nutrition, 92(4), 689-700. https://doi.org/10.1079/BJN20041250.
Soltan, Y., Morsy, A., Hashem, N., Elazab, M., Sultan, M., Marey, H., Lail, G. A. E., El-Desoky, N., Hosny, N., & Mahdy, A. (2021). Modified nano-montmorillonite and monensin modulate in vitro ruminal fermentation, nutrient degradability, and methanogenesis differently. Animals, 11(10), 3005. Modified Nano-Montmorillonite and Monensin Modulate In Vitro Ruminal Fermentation, Nutrient Degradability, and Methanogenesis Differently.
Sun, K., Liu, H., Fan, H., Liu, T., & Zheng, C. (2021). Research progress on the application of feed additives in ruminal methane emission reduction: a review. PeerJ, 9, e11151. https://doi.org/10.7717/peerj.11151.
Tahery, S., Parra, M. C., Munroe, P., Mitchell, D. R., Meale, S. J., & Joseph, S. (2025). Developing an activated biochar-mineral supplement for reducing methane formation in anaerobic fermentation. Biochar, 7(1), 26. https://doi.org/10.1007/s42773-024-00403-5.
Takahashi, L. S., Sanches, T. P., Issakowicz, J., Bueno, M. S., Bompadre, T. F. V., de Paz, C. C. P., Abdalla, A. L., & da Costa, R. L. D. (2024). Lipid supplementation with macadamia by-product reduces methane emissions by sheep. Small Ruminant Research, 231, 107174. https://doi.org/10.1016/j.smallrumres.2023.107174.
Toral, P. G., Belenguer, A., Frutos, P., & Hervás, G. (2009). Effect of the supplementation of a high-concentrate diet with sunflower and fish oils on ruminal fermentation in sheep. Small Ruminant Research, 81(2-3), 119-125. https://doi.org/10.1016/j.smallrumres.2008.12.009.
Unnawong, N., Cherdthong, A., & So, S. (2021). Crude saponin extract from Sesbania grandiflora (L.) Pers pod meal could modulate ruminal fermentation, and protein utilization, as well as mitigate methane production. Tropical Animal Health and Production, 53, 1-9. https://doi.org/10.1007/s11250-021-02644-z.
van Gastelen, S., Burgers, E. E., Dijkstra, J., de Mol, R., Muizelaar, W., Walker, N., & Bannink, A. (2024). Long-term effects of 3-nitrooxypropanol on methane emission and milk production characteristics in Holstein-Friesian dairy cows. Journal of dairy Science, 107(8), 5556-5573. https://doi.org/10.3168/jds.2023-24198.
Van Wesemael, D., Vandaele, L., Ampe, B., Cattrysse, H., Duval, S., Kindermann, M., Fievez, V., De Campeneere, S., & Peiren, N. (2019). Reducing enteric methane emissions from dairy cattle: Two ways to supplement 3-nitrooxypropanol. Journal of dairy Science, 102(2), 1780-1787. https://doi.org/10.3168/jds.2018-14534.
Van Wyngaard, J., Meeske, R., & Erasmus, L. (2018). Effect of concentrate feeding level on methane emissions, production performance and rumen fermentation of Jersey cows grazing ryegrass pasture during spring. Animal Feed Science and Technology, 241, 121-132. https://doi.org/10.1016/j.anifeedsci.2018.04.025.
Vanhatalo, A., & Halmemies-Beauchet-Filleau, A. (2020). Optimising ruminal function: the role of silage and concentrate in dairy cow nutrition to improve feed efficiency and reduce methane and nitrogen emissions. In C. McSweeney & R. Mackie (Eds.), Improving rumen function (pp. 651-692). Burleigh Dodds Science Publishing.
Verma, S., Akpensuen, T. T., Wolffram, S., Salminen, J.-P., Taube, F., Blank, R., Kluß, C., & Malisch, C. S. (2024). Investigating the efficacy of purified tannin extracts from underutilized temperate forages in reducing enteric methane emissions in vitro. Scientific Reports, 14(1), 12578. https://doi.org/10.1038/s41598-024-63434-9.
Wanapat, M., Kang, S., & Polyorach, S. (2013). Development of feeding systems and strategies of supplementation to enhance rumen fermentation and ruminant production in the tropics. Journal of animal science and biotechnology, 4, 1-11. https://doi.org/10.1186/2049-1891-4-32.
Wang, K., Nan, X., Chu, K., Tong, J., Yang, L., & Zheng, S. (2018). Shifts of hydrogen metabolism from methanogenesis to propionate production in response to replacement of forage fiber with non-forage fiber sources in diets in vitro. Front Microbiol, 9, 2764. https://doi.org/10.3389/fmicb.2018.02764.
Wang, K., Xiong, B., & Zhao, X. (2023). Could propionate formation be used to reduce enteric methane emission in ruminants? Science of the Total Environment, 855, 158867. https://doi.org/10.1016/j.scitotenv.2022.158867.
Wang, Y., Xu, Z., Bach, S., & McAllister, T. (2008). Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Animal Feed Science and Technology, 145(1-4), 375-395. https://doi.org/10.1016/j.anifeedsci.2007.03.013.
Xue, B., Thompson, J. P., Yan, T., Stergiadis, S., Smith, L., & Theodoridou, K. (2025). Dose–response effects of dietary inclusion of agro‐industrial by‐products on in vitro ruminal fermentation and methane production. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.14263.
Yadav, R. D., Mohini, M., Singh, D., & Chugh, R. (2021). Dietary effect of combination of nitrate, sulphate and saponin on growth rate and methane mitigation on crossbred calves. The Pharma Innovation Journal, 10, 540-544.
Yang, Z., Zheng, Y., Liu, S., Xie, T., Wang, Q., Wang, Z., Li, S., & Wang, W. (2024). Rumen metagenome reveals the mechanism of mitigation methane emissions by unsaturated fatty acid while maintaining the performance of dairy cows. Animal Nutrition, 18, 296-308. https://doi.org/10.1016/j.aninu.2024.06.003.

Downloads
Published
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
License
Copyright (c) 2025 Sabrin Morshidy (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Author/s 2025 under the terms of the Creative Commons Attribution 4.0 International License.