Challenges and innovative solutions in sustainable aquaculture: How can it contribute to food security and environmental protection
Keywords:
Technology driven solution, aquaculture, IMTA, precision aquaculture, resource use, sustainability, food securityAbstract
Sustainable aquaculture presents a dual opportunity to meet the nutritional needs of a growing population while alleviating pressure on fragile marine ecosystems. However, realizing this potential requires navigating significant challenges, including pollution, environmental degradation, disease management, resource efficiency, and lack of regulations. In addition, these challenges will be maximized with the need to expand aquaculture by nearly 50% by 2030 to meet increasing global protein needs. Therefore, careful management must be implemented to reduce the potential environmental risk. There are several innovative solutions that could drive sustainable aquaculture growth, including integrated aquaculture systems that can foster efficiency, resource optimization, and resilience. Alternative feedstuff, especially fishmeal alternatives such as plant protein mixtures, insect meal, and single cell protein. In addition, technology driven solutions including smart systems, precision aquaculture, and the adoption of sustainable practices can help balance the aquaculture growth with environmental conservation. Finaly, policymakers and industry stakeholders must prioritize best practices, certification schemes, and technological innovations to ensure that aquaculture’s expansion aligns with planetary environmental health objectives. In this review challenges and promising solutions for more sustainable aquaculture will be deeply discussed.
References
Ahern, M., Thilsted, S., Oenema, S., & Kühnhold, H. (2021). The role of aquatic foods in sustainable healthy diets. UN Nutrition Discussion Paper.
Aich, N., Nama, S., Biswal, A., & Paul, T. (2020). A review on recirculating aquaculture systems: Challenges and opportunities for sustainable aquaculture. Innovative Farming, 5(1), 17-24.
Akpoilih, B. U. (2023). Microbial-Based Systems and Single-Cell Ingredients: Exploring Their Role in Sustainable Aquaculture Production. In Emerging Sustainable Aquaculture Innovations in Africa (pp. 209-249). Springer. https://doi.org/10.1007/978-981-19-7451-9_9.
Aksnes, D. L., Holm, P., Bavinck, M., Biermann, F., Donovaro, R., Harvey, P., Hynes, S., Ingram, J., Kaiser, M., & Kaushik, S. (2017). Food from the Oceans-How can more food and biomass be obtained from the oceans in a way that does not deprive future generations of their benefits? Faculty of Engineering & Science, University of Greenwish]. London, UK.
Akter, S., Haque, M. A., Sarker, M. A.-A., Atique, U., Iqbal, S., Sarker, P. K., Paray, B. A., Arai, T., & Hossain, M. B. (2024). Efficacy of using plant ingredients as partial substitute of fishmeal in formulated diet for a commercially cultured fish, Labeo rohita. Frontiers in Sustainable Food Systems, 8, 1376112. https://doi.org/10.3389/fsufs.2024.1376112.
Alam, M. M., Jørgensen, N. O., Bass, D., Santi, M., Nielsen, M., Rahman, M. A., Hasan, N. A., Bablee, A. L., Bashar, A., & Hossain, M. I. (2024). Potential of integrated multitrophic aquaculture to make prawn farming sustainable in Bangladesh. Frontiers in Sustainable Food Systems, 8, 1412919. https://doi.org/10.3389/fsufs.2024.1412919.
Araujo, G. S., Silva, J. W. A. d., Cotas, J., & Pereira, L. (2022). Fish farming techniques: current situation and trends. Journal of Marine Science and Engineering, 10(11), 1598. https://doi.org/10.3390/jmse10111598.
Auzins, A., Leimane, I., Reissaar, R., Brobakk, J., Sakelaite, I., Grivins, M., & Zihare, L. (2024). Assessing the socio-economic benefits and costs of insect meal as a fishmeal substitute in livestock and aquaculture. Animals, 14(10), 1461. https://doi.org/10.3390/ani14101461.
Black, K. D., & Cromey, C. J. (2008). The scientific basis of marine fish farm regulation. Science Diliman, 20(2), 1-10.
Boyd, C. E., & Massaut, L. (1999). Risks associated with the use of chemicals in pond aquaculture. Aquacultural engineering, 20(2), 113-132. https://doi.org/10.1016/S0144-8609(99)00010-2.
Boyd, C. E., & McNevin, A. A. (2024). Resource use and pollution potential in feed-based aquaculture. Reviews in Fisheries Science & Aquaculture, 32(2), 306-333. https://doi.org/10.1080/23308249.2023.2258226.
Boyd, C. E., McNevin, A. A., & Davis, R. P. (2022). The contribution of fisheries and aquaculture to the global protein supply. Food security, 14(3), 805-827. https://doi.org/10.1007/s12571-021-01246-9.
Bueno, P. B. (2021). Widening the Horizon of Asian Mariculture with IMTA. Journal of the Indian Society of Coastal Agricultural Research, 39(2), 239-248. https://doi.org/10.54894/jiscar.39.2.2021.110550.
Buttle, L., Noorman, H., Roa Engel, C., & Santigosa, E. (2024). Bridging the protein gap with single-cell protein use in aquafeeds. Frontiers in Marine Science, 11, 1384083. https://doi.org/10.3389/fmars.2024.1384083.
Chen, B. F., Hsu, H.-L., Yeh, P.-H., Hung, C.-C., Hsieh, M. C., & Lui, H.-K. (2024). Revolutionizing Aquaculture: Sustainable Solutions with Established Technology. Available at SSRN 4851346, http://dx.doi.org/10.2139/ssrn.4851346.
Chung, I. K., Oak, J. H., Lee, J. A., Seo, H., Kim, J. G., & Park, K.-S. (2018). Importance of Seaweed in the Climate Change. In M. F. Xavier, P. I. Sousa, & A. C. Guedes (Eds.), Marine Macro-and Microalgae: An Overview. CRC Press.
Colt, J., Schuur, A. M., Weaver, D., & Semmens, K. (2022). Engineering design of aquaponics systems. Reviews in Fisheries Science & Aquaculture, 30(1), 33-80. https://doi.org/10.1080/23308249.2021.1886240.
Costa-Pierce, B. A., Bartley, D., Hasan, M., Yusoff, F., Kaushik, S., Rana, K., Lemos, D., Bueno, P., & Yakupitiyage, A. (2010). Responsible use of resources for sustainable aquaculture. Farming the waters for people and food. Proceedings of the Global Conference on Aquaculture, Roma, Italy.
Czarny, K., Szczukocki, D., Krawczyk, B., Gadzała-Kopciuch, R., & Skrzypek, S. (2019). Toxicity of single steroid hormones and their mixtures toward the cyanobacterium Microcystis aeruginosa. Journal of Applied Phycology, 31, 3537-3544. https://doi.org/10.1007/s10811-019-01874-x.
de Melo Júnior, A. M., Kosten, S., Duque, V. L. d. C., Santos, A. A., Amado, A. M., Soranço, L. C., Dreise, J., Martins, A. C., Nasário, J., & Barbosa, A. P. D. (2025). Low carbon footprint of Nile tilapia farming with recirculation aquaculture. Resources, Conservation and Recycling, 217, 108201. https://doi.org/10.1016/j.resconrec.2025.108201.
Diken, G., Köknaroğlu, H., & Can, İ. (2022). Small-scale rainbow trout cage farm in the inland waters of Turkey is sustainable in terms of carbon footprint (kg CO2e). Acta Aquatica Turcica, 18(1), 131-145. https://doi.org/10.22392/actaquatr.1005447.
Dobretsov, S., Coutinho, R., Rittschof, D., Salta, M., Ragazzola, F., & Hellio, C. (2019). The oceans are changing: impact of ocean warming and acidification on biofouling communities. Biofouling, 35(5), 585-595.
Fantatto, R. R., Mota, J., Ligeiro, C., Vieira, I., Guilgur, L. G., Santos, M., & Murta, D. (2024). Exploring sustainable alternatives in aquaculture feeding: The role of insects. Aquaculture Reports, 37, 102228. https://doi.org/10.1016/j.aqrep.2024.102228.
FAO. (2022). The state of world fisheries and aquaculture. Food and Agriculture Organization.
Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D., & Halpern, B. S. (2018). Comparative terrestrial feed and land use of an aquaculture-dominant world. Proceedings of the National Academy of Sciences, 115(20), 5295-5300.
Granada, L., Lopes, S., Novais, S. C., & Lemos, M. F. (2018). Modelling integrated multi-trophic aquaculture: Optimizing a three trophic level system. Aquaculture, 495, 90-97. https://doi.org/10.1016/j.aquaculture.2018.05.029.
Grzegorzek, M., Wartalska, K., & Kowalik, R. (2024). Occurrence and sources of hormones in water resources—Environmental and health impact. Environmental Science and Pollution Research, 31(26), 37907-37922. https://doi.org/10.1007/s11356-024-33713-z.
Han, Y.-K., Xu, Y.-C., Luo, Z., Zhao, T., Zheng, H., & Tan, X.-Y. (2022). Fish meal replacement by mixed plant protein in the diets for juvenile yellow catfish Pelteobagrus fulvidraco: effects on growth performance and health status. Aquaculture Nutrition, 2022(1), 2677885. https://doi.org/10.1155/2022/2677885.
Hasan, I., Gai, F., Cirrincione, S., Rimoldi, S., Saroglia, G., & Terova, G. (2023). Chitinase and insect meal in aquaculture nutrition: a comprehensive overview of the latest achievements. Fishes, 8(12), 607. https://doi.org/10.3390/fishes8120607.
Hossain, A., Senff, P., & Glaser, M. (2022). Lessons for coastal applications of IMTA as a way towards sustainable development: A review. Applied Sciences, 12(23), 11920. https://doi.org/10.3390/app122311920.
Hussain, S. M., Bano, A. A., Ali, S., Rizwan, M., Adrees, M., Zahoor, A. F., Sarker, P. K., Hussain, M., Arsalan, M. Z.-u.-H., & Yong, J. W. H. (2024). Substitution of fishmeal: Highlights of potential plant protein sources for aquaculture sustainability. Heliyon, 10(4), e26573. https://doi.org/10.1016/j.heliyon.2024.e26573.
Ido, A., Takahashi, T., Miura, C., Hirayasu, H., Seyama, T., & Miura, T. (2024). Effect of two full-fat insect meals, yellow mealworm and black soldier fly larva, on growth performance of juvenile yellowtail. Journal of Insects as Food and Feed, 1(aop), 1-14.
Jayandan, S., Prathibanandhi, K., Sahana, A., Agilesh, M., & Chethan, K. (2024). Smart Systems for Sustainable Aquaculture: A Focus on Water Quality. International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), https://doi.org/10.1109/ICPECTS62210.2024.10780341.
Jennings, S., Stentiford, G. D., Leocadio, A. M., Jeffery, K. R., Metcalfe, J. D., Katsiadaki, I., Auchterlonie, N. A., Mangi, S. C., Pinnegar, J. K., & Ellis, T. (2016). Aquatic food security: insights into challenges and solutions from an analysis of interactions between fisheries, aquaculture, food safety, human health, fish and human welfare, economy and environment. Fish and Fisheries, 17(4), 893-938. https://doi.org/10.1111/faf.12152.
Jescovitch, L. N., Chaney, P. L., & Boyd, C. E. (2016). A preliminary assessment of land-to-water surface area ratios (LWR) for sustainable land use in aquaculture. Papers in Applied Geography, 2(2), 178-188. https://doi.org/10.1080/23754931.2015.1115367.
Jonell, M., Crona, B., Brown, K., Rönnbäck, P., & Troell, M. (2016). Eco-labeled seafood: Determinants for (blue) green consumption. Sustainability, 8(9), 884. https://doi.org/10.3390/su8090884.
Kathuria, S., Rawat, P., Kumar, G. R., Singh, B., & Taneja, A. (2024). Amalgamation of Technologies for Smart Monitoring of Sustainable Aquaculture. 2023 International Conference on Smart Devices (ICSD), Dehradun, India. https://doi.org/0.1109/ICSD60021.2024.10751351.
Krause-Jensen, D., Lavery, P., Serrano, O., Marbà, N., Masque, P., & Duarte, C. M. (2018). Sequestration of macroalgal carbon: the elephant in the Blue Carbon room. Biology letters, 14(6), 20180236. https://doi.org/10.1098/rsbl.2018.0236.
Kunzmann, A., Todinanahary, G., Msuya, F. E., & Alfiansah, Y. (2023). Comparative environmental impacts and development benefits of coastal aquaculture in three tropical countries: Madagascar, Tanzania and Indonesia. Tropical Life Sciences Research, 34(3), 279. https://doi.org/10.21315/tlsr2023.34.3.15.
Laktuka, K., Kalnbalkite, A., Sniega, L., Logins, K., & Lauka, D. (2023). Towards the sustainable intensification of aquaculture: Exploring possible ways forward. Sustainability, 15(24), 16952. https://doi.org/10.3390/su152416952.
Lal, J., Vaishnav, A., Deb, S., Gautam, P., Pavankalyan, M., Kumari, K., & Verma, D. K. (2024). Re-Circulatory Aquaculture Systems: A Pathway to Sustainable Fish Farming. Archives of Current Research International, 24, 799-810. https://doi.org/10.9734/acri/2024/v24i5756.
Little, D. C., Newton, R., & Beveridge, M. (2016). Aquaculture: a rapidly growing and significant source of sustainable food? Status, transitions and potential. Proceedings of the Nutrition Society, 75(3), 274-286.
Liu, G., Verdegem, M., Ye, Z., Zhao, J., Xiao, J., Liu, X., Liang, Q., Xiang, K., & Zhu, S. (2025). Advancing Aquaculture Sustainability: A Comprehensive Review of Biofloc Technology Trends, Innovative Research Approaches, and Future Prospects. Reviews in Aquaculture, 17(1), e12970. https://doi.org/10.1111/raq.12970.
Luo, Y., Qiao, F., Zhang, M. L., & Du, Z. Y. (2023). Marine aquaculture: A developing domain needing thorough planning, management and novel technological supports. Reviews in Aquaculture, 15(4), 1258-1259. ttps://doi.org/10.1111/raq.12851.
Luthman, O., Jonell, M., Rönnbäck, P., & Troell, M. (2022). Strong and weak sustainability in Nordic aquaculture policies. Aquaculture, 550, 737841. https://doi.org/10.1016/j.aquaculture.2021.737841.
M Zaki, F., M Said, M., Tahoun, A.-A., & Amer, M. (2021). Evaluation of different sex reversal treatments in red tilapia hybrid. Egyptian Journal of Aquatic Biology and Fisheries, 25(1), 279-292. https://doi.org/10.21608/ejabf.2021.140630.
Marín, T., Wu, J., Wu, X., Ying, Z., Lu, Q., Hong, Y., Wang, X., & Yang, W. (2019). Resource use in mariculture: a case study in Southeastern China. Sustainability, 11(5), 1396. https://doi.org/10.3390/su11051396.
Mariyono, J. (2024). Sustainable intensification practices of fish-rice co-culture in Java, Indonesia: technical, socio-economic and environmental features. Journal of Agribusiness in Developing and Emerging Economies, 14(5), 1015-1032. https://doi.org/10.1108/JADEE-09-2022-0208.
Marshall, Z., & Brockway, P. E. (2020). A net energy analysis of the global agriculture, aquaculture, fishing and forestry system. Biophysical Economics and Sustainability, 5(2), 9. https://doi.org/10.1007/s41247-020-00074-3.
Martins, C., Eding, E. H., Verdegem, M. C., Heinsbroek, L. T., Schneider, O., Blancheton, J.-P., d’Orbcastel, E. R., & Verreth, J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacultural engineering, 43(3), 83-93. https://doi.org/10.1016/j.aquaeng.2010.09.002.
Midilli, A., Kucuk, H., & Dincer, I. (2012). Environmental and sustainability aspects of a recirculating aquaculture system. Environmental Progress & Sustainable Energy, 31(4), 604-611. https://doi.org/10.1002/ep.10580.
Mugwanya, M., Dawood, M. A., Kimera, F., & Sewilam, H. (2023). Replacement of fish meal with fermented plant proteins in the aquafeed industry: A systematic review and meta‐analysis. Reviews in Aquaculture, 15(1), 62-88. https://doi.org/10.1111/raq.12701.
Nugegoda, D., & Kibria, G. (2017). Effects of environmental chemicals on fish thyroid function: Implications for fisheries and aquaculture in Australia. General and comparative endocrinology, 244, 40-53. https://doi.org/10.1016/j.ygcen.2016.02.021.
Ohia, C. (2025). Aquaculture Technologies and Practices: Balancing Innovation, Environment and Economy for Sustainability. In Food Security, Nutrition and Sustainability Through Aquaculture Technologies (pp. 417-424). Springer. https://doi.org/10.1007/978-3-031-75830-0_23.
Ojoghoro, J., Scrimshaw, M., & Sumpter, J. (2021). Steroid hormones in the aquatic environment. Science of the Total Environment, 792, 148306. https://doi.org/10.1016/j.scitotenv.2021.148306.
Oliva-Teles, A., Enes, P., Couto, A., & Peres, H. (2022). Replacing fish meal and fish oil in industrial fish feeds. In D. A. Davis (Ed.), Feed and feeding practices in aquaculture 2 nd (pp. 231-268). Elsiever. https://doi.org/10.1016/B978-0-12-821598-2.00011-4.
Osorio-Reyes, J. G., Valenzuela-Amaro, H. M., Pizaña-Aranda, J. J. P., Ramírez-Gamboa, D., Meléndez-Sánchez, E. R., López-Arellanes, M. E., Castañeda-Antonio, M. D., Coronado-Apodaca, K. G., Gomes Araújo, R., & Sosa-Hernández, J. E. (2023). Microalgae-based biotechnology as alternative biofertilizers for soil enhancement and carbon footprint reduction: Advantages and implications. Marine Drugs, 21(2), 93. https://doi.org/10.3390/md21020093.
Perera, O., Lefebvre, L., Hammadi, M., El Harty, K., & Scholtz, L. (2024). Nature-based solutions in small-scale aquaculture to improve food security: Stories on early practice. Shamba Centre for Food & Climate.
Pueppke, S. G., Nurtazin, S., & Ou, W. (2020). Water and land as shared resources for agriculture and aquaculture: Insights from Asia. Water, 12(10), 2787. https://doi.org/10.3390/w12102787.
Qian, Y. F., Limbu, S. M., Qiao, F., Luo, Y., Chen, L. Q., Zhang, M. L., & Du, Z. Y. (2024). Seeking the best alternatives: A systematic review and meta‐analysis on replacing fishmeal with plant protein sources in carnivorous fish species. Reviews in Aquaculture, 16(3), 1099-1126. https://doi.org/10.1111/raq.12888.
Raj, S., Kumar, A. B., Tharian, J., & Raghavan, R. (2021). Illegal and unmanaged aquaculture, unregulated fisheries and extreme climatic events combine to trigger invasions in a global biodiversity hotspot. Biological Invasions, 23(8), 2373-2380. https://doi.org/10.1007/s10530-021-02525-4.
Renwick, A. (2016, April 4-6, 2016). Regulatory failure and risk in Aquaculture: A case study of the Irish Oyster Industry Agricultural Economics Society - AES > 90th Annual Conference,, Warwick University, Coventry, UK. https://doi.org/10.22004/ag.econ.236286.
Richards, D. R., & Friess, D. A. (2016). Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proceedings of the National Academy of Sciences, 113(2), 344-349.
Rico, A., Satapornvanit, K., Haque, M. M., Min, J., Nguyen, P. T., Telfer, T. C., & van den Brink, P. J. (2012). Use of chemicals and biological products in Asian aquaculture and their potential environmental risks: a critical review. Reviews in Aquaculture, 4(2), 75-93. https://doi.org/10.1111/j.1753-5131.2012.01062.x.
Röthig, T., Barth, A., Tschirner, M., Schubert, P., Wenning, M., Billion, A., Wilke, T., & Vilcinskas, A. (2023). Insect feed in sustainable crustacean aquaculture. Journal of Insects as Food and Feed, 9(9), 1115-1138.
Roy, A., Ghosh, S. K., Hauzoukim, S. S., Bhattacharya, K., Mukherjii, D., & Bardhan, A. (2021). Aqua drugs and chemicals used in freshwater aquaculture: A review. The Pharma Innovation Journal, 10(8), 317-324.
Rusco, G., Roncarati, A., Di Iorio, M., Cariglia, M., Longo, C., & Iaffaldano, N. (2024). Can IMTA System improve the productivity and quality traits of aquatic organisms produced at different trophic levels? The benefits of IMTA—Not only for the ecosystem. Biology, 13(11), 946. https://doi.org/10.3390/biology13110946.
Shafeena, T. (2016). Smart aquaponics system: Challenges and opportunities. European Journal of Advances in Engineering and Technology, 3(2), 52-55. https://doi.org/10.1016/j.egypro.2017.12.694.
Shao, Y., Wang, Y., Yuan, Y., & Xie, Y. (2021). A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Science of the Total Environment, 798, 149205. https://doi.org/10.1016/j.scitotenv.2021.149205.
Sharma, K., Mohapatra, B., Das, P., Sarkar, B., & Chand, S. (2013). Water budgets for freshwater aquaculture ponds with reference to effluent volume. Agricultural Sciences, 2013, 353-359. https://doi.org/10.4236/as.2013.48051.
Slater, M., & James, P. (2023). Low trophic species in aquaculture—growth and research challenges. Journal of the World Aquaculture Society, 54(1), 4-6. https://doi.org/10.1111/jwas.12944.
Sukhdhane, K. S., Kripa, V., Divu, D., Vase, V. K., & Mojjada, S. K. (2018). Integrated multi-trophic aquaculture systems: A solution for sustainability. Aquaculture Asia, 22(4), 26-29. https://enaca.org/?id=1012.
Talebi Bezmin Abadi, A., Rizvanov, A. A., Haertlé, T., & Blatt, N. L. (2019). World Health Organization report: current crisis of antibiotic resistance. BioNanoScience, 9(4), 778-788. https://doi.org/10.1007/s12668-019-00658-4.
Teena Jayakumar, T., & Sarkar, U. K. (2024). Habitat Degradation in Coral Reef Ecosystems and Mangroves: Current Status and Management Measures. In Sustainable Management of Fish Genetic Resources (pp. 111-149). Springer.
Troell, M., Tyedmers, P., Kautsky, N., & Rönnbäck, P. (2004). Aquaculture and energy use. Encyclopedia of energy, 1, 97-108.
Trottet, A., George, C., Drillet, G., & Lauro, F. M. (2022). Aquaculture in coastal urbanized areas: A comparative review of the challenges posed by Harmful Algal Blooms. Critical Reviews in Environmental Science and Technology, 52(16), 2888-2929. https://doi.org/10.1080/10643389.2021.1897372.
Turlybek, N., Nurbekova, Z., Mukhamejanova, A., Baimurzina, B., Kulatayeva, M., Aubakirova, K. M., & Alikulov, Z. (2025). Sustainable Aquaculture Systems and Their Impact on Fish Nutritional Quality. Fishes, 10(5), 206. https://doi.org/10.3390/fishes10050206.
Tyson, R. V., Treadwell, D. D., & Simonne, E. H. (2011). Opportunities and challenges to sustainability in aquaponic systems. HortTechnology, 21(1), 6-13. https://doi.org/10.21273/HORTTECH.21.1.6.
Zafar, M. A., & Rana, M. M. (2022). Biofloc technology: an eco-friendly “green approach” to boost up aquaculture production. Aquaculture International, 30(1), 51-72. https://doi.org/10.1007/s10499-021-00781-8.
Zahran, E., Elmetwally, M., Awadin, W., & El-Matbouli, M. (2020). Multiple xenosteroid pollutants biomarker changes in cultured Nile tilapia using wastewater effluents as their primary water source. Animals, 10(9), 1475. https://doi.org/10.3390/ani10091475.
Zaretabar, A., Ouraji, H., Kenari, A. A., Yeganeh, S., Esmaeili, N., & Amirkolaee, A. K. (2021). One step toward aquaculture sustainability of a carnivorous species: Fish meal replacement with barley protein concentrate plus wheat gluten meal in Caspian brown trout (Salmo trutta caspius). Aquaculture Reports, 20, 100714. https://doi.org/10.1016/j.aqrep.2021.100714.

Downloads
Published
Data Availability Statement
The authors declare that data can be provided by the corresponding author upon reasonable request.
License
Copyright (c) 2025 Abdallah Tageldein Mansour (Translator)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Author/s 2025 under the terms of the Creative Commons Attribution 4.0 International License.