Ecotoxicological effects of emerging pollutants (nanomaterials and microplastics) on fish biology
Keywords:
Emerging pollutants, Nanotechnology, Microplastic, Fish biologyAbstract
Emerging contaminants, including heavy metals, nanomaterials, microplastics, and industrial chemicals pose significant threats to aquatic ecosystems and fish health. The emerging pollutants are majorly produced during industrial processes, urbanization, and mining. This review study compiled current knowledge on the ecotoxicological effects of these pollutants on fish biology, encompassing physiological, behavioral, and molecular responses. Innovative methodologies have been used to comprehensively assess toxicological responses, such as high-throughput omics, including transcriptomics, proteomics, and metabolomics can elucidate molecular-level disruptions. In addition, advanced bioimaging techniques e.g., micro-CT scanning can assess internal tissue damage caused by pollutants non-invasively. Furthermore, eco-epidemiological models integrating field and laboratory data will enhance predictive risk assessments. Regulatory frameworks must evolve to incorporate sublethal and chronic toxicity endpoints, ensuring more comprehensive environmental protection strategies. Collaborative efforts among researchers, policymakers, and industries are essential to mitigate contamination sources and develop sustainable remediation approaches for aquatic ecosystems.
References
Abbasi, R., Shineh, G., Mobaraki, M., Doughty, S., Tayebi, L., 2023. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. J. Nanoparticle Res. 25, 43. https://doi.org/10.1007/s11051-023-05690-w
Abdal Dayem, A., Hossain, M.K., Lee, S. Bin, Kim, K., Saha, S.K., Yang, G.-M., Choi, H.Y., Cho, S.-G., 2017. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 18, 120. https://doi.org/10.3390/ijms18010120
Ali, H., Khan, E., 2019. Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health. Hum. Ecol. Risk Assess. An Int. J. 25, 1353–1376. https://doi.org/10.1080/10807039.2018.1469398
Amir, S., Shah, S.T.A., Mamoulakis, C., Docea, A.O., Kalantzi, O.-I., Zachariou, A., Calina, D., Carvalho, F., Sofikitis, N., Makrigiannakis, A., 2021. Endocrine disruptors acting on estrogen and androgen pathways cause reproductive disorders through multiple mechanisms: a review. Int. J. Environ. Res. Public Health 18, 1464. https://doi.org/10.3390/ijerph18041464
Angelier, F., 2022. Consequences of developmental exposure to pollution: importance of stress-coping mechanisms, in: Development Strategies and Biodiversity: Darwinian Fitness and Evolution in the Anthropocene. Springer, pp. 283–316. https://doi.org/10.1007/978-3-030-90131-8_9
Apte, U., Krishnamurthy, P., 2010. Detoxification functions of the liver, in: Molecular Pathology of Liver Diseases. Springer, pp. 147–163. https://doi.org/10.1007/978-1-4419-7107-4_11
Audira, G., Ngoc Anh, N.T., Ngoc Hieu, B.T., Malhotra, N., Siregar, P., Villalobos, O., Villaflores, O.B., Ger, T.-R., Huang, J.-C., Chen, K.H.-C., 2020. Evaluation of the adverse effects of chronic exposure to donepezil (an acetylcholinesterase inhibitor) in adult zebrafish by behavioral and biochemical assessments. Biomolecules 10, 1340. https://doi.org/10.3390/biom10091340
Ayanda, O.S., Mmuoegbulam, A.O., Okezie, O., Durumin Iya, N.I., Mohammed, S.E., James, P.H., Muhammad, A.B., Unimke, A.A., Alim, S.A., Yahaya, S.M., 2024. Recent progress in carbon-based nanomaterials: critical review. J. Nanoparticle Res. 26, 106. https://doi.org/10.1007/s11051-024-06006-2
Bashir, I., Lone, F.A., Bhat, R.A., Mir, S.A., Dar, Z.A., Dar, S.A., 2020. Concerns and threats of contamination on aquatic ecosystems. Bioremediation Biotechnol. Sustain. approaches to Pollut. Degrad. 1–26. https://doi.org/10.1007/978-3-030-35691-0_1
Benedetti, M., Giuliani, M.E., Regoli, F., 2015. Oxidative metabolism of chemical pollutants in marine organisms: molecular and biochemical biomarkers in environmental toxicology. Ann. N. Y. Acad. Sci. 1340, 8–19. https://doi.org/10.1111/nyas.12698
Bevacqua, E., Occhiuzzi, M.A., Grande, F., Tucci, P., 2023. TiO2-NPs toxicity and safety: an update of the findings published over the last six years. Mini Rev. Med. Chem. 23, 1050–1057.
Bhagat, J., Nishimura, N., Shimada, Y., 2021. Toxicological interactions of microplastics/nanoplastics and environmental contaminants: current knowledge and future perspectives. J. Hazard. Mater. 405, 123913. https://doi.org/10.1016/j.jhazmat.2020.123913
Boota, M.W., Soomro, S., Xia, H., Qin, Y., Kakakhel, M.A., Yan, C., Weiran, L., Xu, J., 2024. Distribution and bioaccumulation of trace elements in two Cyprinidae fish species in the Indus river, Pakistan, including the impact of hydraulic structure on macroinvertebrates’ biodiversity. Environ. Res. 252, 118882. https://doi.org/https://doi.org/10.1016/j.envres.2024.118882
Bramatti, I., Matos, B., Figueiredo, N., Pousão-Ferreira, P., Branco, V., Martins, M., 2023. Interaction of Polycyclic Aromatic Hydrocarbon compounds in fish primary hepatocytes: From molecular mechanisms to genotoxic effects. Sci. Total Environ. 855, 158783. https://doi.org/10.1016/j.scitotenv.2022.158783
Chen, P., Huang, J., Rao, L., Zhu, W., Yu, Y., Xiao, F., Chen, X., Yu, H., Wu, Y., Xu, K., Pubo, C., Jie, H., Liuyu, R., Wengen, Z., Yuhe, Y., Fanshu, X., Xiaojuan, C., Huang, Y., Yongjie, W., Kui, X., Xiafei, Z., Ruiwen, H., Zhili, H., Qingyun, Y., Rosie, A., 2021. Resistance and resilience of fish gut microbiota to silver nanoparticles. mSystems 6, e00630-21. https://doi.org/10.1128/mSystems.00630-21
Chmiel, J.A., Daisley, B.A., Pitek, A.P., Thompson, G.J., Reid, G., 2020. Understanding the effects of sublethal pesticide exposure on honey bees: a role for probiotics as mediators of environmental stress. Front. Ecol. Evol. 8, 22. https://doi.org/10.1007/s13592-021-00879-1
Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., Galloway, T.S., 2013. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47, 6646.
Córdoba-Tovar, L., Marrugo-Negrete, J., Barón, P.R., Díez, S., 2022. Drivers of biomagnification of Hg, As and Se in aquatic food webs: a review. Environ. Res. 204, 112226. https://doi.org/10.1016/j.envres.2021.112226
Curcio, V., Macirella, R., Sesti, S., Ahmed, A.I.M., Talarico, F., Tagarelli, A., Mezzasalma, M., Brunelli, E., 2022. Morphological and functional alterations induced by two ecologically relevant concentrations of Lead on Danio rerio gills. Int. J. Mol. Sci. 23, 9165. https://doi.org/10.3390/ijms23169165
Das, A., 2023. The emerging role of microplastics in systemic toxicity: Involvement of reactive oxygen species (ROS). Sci. Total Environ. 895, 165076. https://doi.org/10.1016/j.scitotenv.2023.165076
Das, B.K., Roy, S., Kumar, V., Adhikari, A., Ganguly, S., Bisai, K., 2025. Modulation of immune gene expression profile in Labeo catla with chronic toxicity to emerging endocrine disruptors through a multiorgan approach. Sci. Rep. 15, 11244. https://doi.org/10.1038/s41598-025-95996-7
Deng, R., Lin, D., Zhu, L., Majumdar, S., White, J.C., Gardea-Torresdey, J.L., Xing, B., 2017. Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology 11, 591–612.
Ding, R., Ma, Y., Li, T., Sun, M., Sun, Z., Duan, J., 2023. The detrimental effects of micro-and nano-plastics on digestive system: An overview of oxidative stress-related adverse outcome pathway. Sci. Total Environ. 878, 163144. https://doi.org/10.1016/j.scitotenv.2023.163144
Ding, T., Wei, L., Hou, Z., Li, J., Zhang, C., Lin, D., 2022. Microplastics altered contaminant behavior and toxicity in natural waters. J. Hazard. Mater. 425, 127908. https://doi.org/10.1016/j.jhazmat.2021.127908
Emenike, E.C., Iwuozor, K.O., Anidiobi, S.U., 2022. Heavy metal pollution in aquaculture: sources, impacts and mitigation techniques. Biol. Trace Elem. Res. 1–17. https://doi.org/10.1007/s12011-021-03037-x
Farag, M.R., Alagawany, M., Bilal, R.M., Gewida, A.G.A., Dhama, K., Abdel-Latif, H.M.R., Amer, M.S., Rivero-Perez, N., Zaragoza-Bastida, A., Binnaser, Y.S., 2021. An overview on the potential hazards of pyrethroid insecticides in fish, with special emphasis on cypermethrin toxicity. Animals 11, 1880. https://doi.org/10.3390/ani11071880
Garai, P., Banerjee, P., Mondal, P., Saha, N.C., 2021. Effect of heavy metals on fishes: Toxicity and bioaccumulation. J Clin Toxicol. S 18.
Gauthier, J., Lavoie, C., Charette, S.J., Derome, N., 2019. Host-microbiota interactions and their importance in promoting growth and resistance to opportunistic diseases in salmonids. Microb. Communities Aquac. Ecosyst. Improv. Product. Sustain. 21–50. https://doi.org/10.1007/978-3-030-16190-3_2
Godswill, A.C., Godspel, A.C., 2019. Physiological effects of plastic wastes on the endocrine system (Bisphenol A, Phthalates, Bisphenol S, PBDEs, TBBPA). Int. J. Bioinforma. Comput. Biol. 4, 11–29.
Gupta, R.C., Malik, J.K., Milatovic, D., 2011. Organophosphate and carbamate pesticides, in: Reproductive and Developmental Toxicology. Elsevier, pp. 471–486. https://doi.org/10.1016/B978-0-12-382032-7.10037-2
Gwenzi, W., Chaukura, N., 2018. Organic contaminants in African aquatic systems: current knowledge, health risks, and future research directions. Sci. Total Environ. 619, 1493–1514. https://doi.org/10.1016/j.scitotenv.2017.11.121
Jabeen, K., Su, L., Li, J., Yang, D., Tong, C., Mu, J., Shi, H., 2017. Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environ. Pollut. 221, 141–149. https://doi.org/10.1016/j.envpol.2016.11.055
Jomova, K., Makova, M., Alomar, S.Y., Alwasel, S.H., Nepovimova, E., Kuca, K., Rhodes, C.J., Valko, M., 2022. Essential metals in health and disease. Chem. Biol. Interact. 367, 110173. https://doi.org/10.1016/j.cbi.2022.110173
Jomova, K., Raptova, R., Alomar, S.Y., Alwasel, S.H., Nepovimova, E., Kuca, K., Valko, M., 2023. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 97, 2499–2574. https://doi.org/10.1007/s00204-023-03562-9
Kakakhel, M.A., Bibi, N., Mahboub, H.H., Wu, F., Sajjad, W., Din, S.Z.U., Hefny, A.A., Wang, W., 2023a. Influence of biosynthesized nanoparticles exposure on mortality, residual deposition, and intestinal bacterial dysbiosis in Cyprinus carpio. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 263, 109473. https://doi.org/https://doi.org/10.1016/j.cbpc.2022.109473
Kakakhel, M.A., Narwal, N., Kataria, N., Johari, S.A., Zaheer Ud Din, S., Jiang, Z., Khoo, K.S., Xiaotao, S., 2023b. Deciphering the dysbiosis caused in the fish microbiota by emerging contaminants and its mitigation strategies-A review. Environ. Res. 237, 117002. https://doi.org/https://doi.org/10.1016/j.envres.2023.117002
Kakakhel, M.A., Wu, F., Feng, H., Hassan, Z., Ali, I., Saif, I., Zaheer Ud Din, S., Wang, W., 2021. Biological synthesis of silver nanoparticles using animal blood, their preventive efficiency of bacterial species, and ecotoxicity in common carp fish. Microsc. Res. Tech. n/a. https://doi.org/https://doi.org/10.1002/jemt.23733
Kodavanti, U.P., Jackson, T.W., Henriquez, A.R., Snow, S.J., Alewel, D.I., Costa, D.L., 2023. Air Pollutant impacts on the brain and neuroendocrine system with implications for peripheral organs: a perspective. Inhal. Toxicol. 35, 109–126. https://doi.org/10.1080/08958378.2023.2172486
Kumar, N., Priyadarshi, H., Parhi, J., Pandey, P.K., Kumar, D., 2025. Acute toxicity of mercury in response to metallothionein expression and oxidative and cellular metabolic stress in Barbonymus gonionotus. Sci. Rep. 15, 12022. https://doi.org/10.1038/s41598-025-95697-1
Lima, C., Falcão, M.A.P., Rosa, J.G.S., Disner, G.R., Lopes-Ferreira, M., 2022. Pesticides and their impairing effects on epithelial barrier integrity, dysbiosis, disruption of the AhR signaling pathway and development of immune-mediated inflammatory diseases. Int. J. Mol. Sci. 23, 12402. https://doi.org/10.3390/ijms232012402
Liu, D., Shi, Q., Liu, C., Sun, Q., Zeng, X., 2023. Effects of endocrine-disrupting heavy metals on human health. Toxics 11, 322. https://doi.org/10.3390/toxics11040322
Macneale, K.H., Kiffney, P.M., Scholz, N.L., 2010. Pesticides, aquatic food webs, and the conservation of Pacific salmon. Front. Ecol. Environ. 8, 475–482. https://doi.org/10.1890/090142
Mahjoubian, M., Naeemi, A.S., Moradi-Shoeili, Z., Tyler, C.R., Mansouri, B., 2023. Oxidative stress, genotoxic effects, and other damages caused by chronic exposure to silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs), and their mixtures in zebrafish (Danio rerio). Toxicol. Appl. Pharmacol. 472, 116569. https://doi.org/10.1016/j.taap.2023.116569
Meng, X., Zheng, X., Mai, W., Gao, J., Fan, Y., Fu, J., Xu, J., 2025. Micro-and nanoplastics differ in particle-mucus interactions: The sight on rheological properties, barrier dysfunction and microbiota dysbiosis. J. Hazard. Mater. 492, 138130. https://doi.org/10.1016/j.jhazmat.2025.138130
Narwal, N., Kakakhel, M.A., 2025. Assessing microplastics in aquatic ecosystem: Sources, effects, and nature-based solution. A review. Reg. Stud. Mar. Sci. 104030. https://doi.org/10.1016/j.rsma.2025.104030
Narwal, N., Kakakhel, M.A., Katyal, D., Yadav, S., Rose, P.K., Rene, E.R., Rakib, M.R.J., Khoo, K.S., Kataria, N., 2024. Interactions Between Microplastic and Heavy Metals in the Aquatic Environment: Implications for Toxicity and Mitigation Strategies. Water, Air, Soil Pollut. 235, 567. https://doi.org/10.1007/s11270-024-07343-7
Narwal, N., Katyal, D., 2024. The abundance and analytical characterization of microplastics in the surface water of Haryana, India. Microsc. Res. Tech. n/a. https://doi.org/https://doi.org/10.1002/jemt.24657
Nguyen, M.-K., Rakib, M.R.J., Lin, C., Hung, N.T.Q., Le, V.-G., Nguyen, H.-L., Malafaia, G., Idris, A.M., 2023. A comprehensive review on ecological effects of microplastic pollution: An interaction with pollutants in the ecosystems and future perspectives. TrAC Trends Anal. Chem. 168, 117294. https://doi.org/10.1016/j.trac.2023.117294
Notariale, R., Infantino, R., Palazzo, E., Manna, C., 2021. Erythrocytes as a model for heavy metal-related vascular dysfunction: the protective effect of dietary components. Int. J. Mol. Sci. 22, 6604. https://doi.org/10.3390/ijms22126604
Okwuosa, O.B., Eyo, J.E., Omovwohwovie, E.E., 2019. Role of fish as bioindicators: A Review. Iconic Res. Eng. J 2, 1456–8880.
Oros, A., 2025. Bioaccumulation and trophic transfer of heavy metals in marine fish: Ecological and ecosystem-level impacts. J. Xenobiotics 15, 59. https://doi.org/10.3390/jox15020059
Ozougwu, J.C., 2016. The role of reactive oxygen species and antioxidants in oxidative stress. Int. J. Res. 1, 1–8.
Padmanaban, S., Pully, D., Samrot, A. V, Gosu, V., Sadasivam, N., Park, I.-K., Radhakrishnan, K., Kim, D.-K., 2023. Rising influence of nanotechnology in addressing oxidative stress-related liver disorders. Antioxidants 12, 1405. https://doi.org/10.3390/antiox12071405
Parida, L., Patel, T.N., 2023. Systemic impact of heavy metals and their role in cancer development: a review. Environ. Monit. Assess. 195, 766. https://doi.org/10.1007/s10661-023-11399-z
Pereira, S.P.P., Boyle, D., Nogueira, A.J.A., Handy, R.D., 2023. Comparison of toxicity of silver nanomaterials and silver nitrate on developing zebrafish embryos: Bioavailability, osmoregulatory and oxidative stress. Chemosphere 336, 139236. https://doi.org/10.1016/j.chemosphere.2023.139236
Pitt, J.A., Kozal, J.S., Jayasundara, N., Massarsky, A., Trevisan, R., Geitner, N., Wiesner, M., Levin, E.D., Di Giulio, R.T., 2018. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio). Aquat. Toxicol. 194, 185–194. https://doi.org/10.1016/j.aquatox.2017.11.017
Poulsen, A., Escher, B., 2012. Chemically induced immunosuppression and disease susceptibility in marine wildlife: A literature review. Entox. Natl. Res. Cent. Environ. Toxicol. Univ. Queensl. 110.
Ray, S., Shaju, S.T., 2023. Bioaccumulation of pesticides in fish resulting toxicities in humans through food chain and forensic aspects. Environ. Anal. Heal. Toxicol. 38, e2023017. 10.5620/eaht.2023017
Rochman, C.M., Kross, S.M., Armstrong, J.B., Bogan, M.T., Darling, E.S., Green, S.J., Smyth, A.R., Veríssimo, D., 2015. Scientific evidence supports a ban on microbeads. https://doi.org/10.1021/acs.est.5b03909
Rohwäder, M., Jeltsch, F., 2022. Foraging personalities modify effects of habitat fragmentation on biodiversity. Oikos 2022, e09056. https://doi.org/10.1111/oik.09056
Roy, R., Kumar, S., Tripathi, A., Das, M., Dwivedi, P.D., 2014. Interactive threats of nanoparticles to the biological system. Immunol. Lett. 158, 79–87. https://doi.org/10.1016/j.imlet.2013.11.019
Sabra, F.S., Mehana, E.-S.E.-D., 2015. Pesticides toxicity in fish with particular reference to insecticides. Asian J. Agric. Food Sci. 3.
Saikumar, S., Mani, R., Ganesan, M., Dhinakarasamy, I., Palanisami, T., Gopal, D., 2024. Trophic transfer and their impact of microplastics on estuarine food chain model. J. Hazard. Mater. 464, 132927. https://doi.org/10.1016/j.jhazmat.2023.132927
Saket, R.D., 2022. Chapter-2 Impact of Heavy Metal Pollutant on Fishes. Adv. Fish. Aquat. Sci. 13.
Sarasamma, S., Audira, G., Siregar, P., Malhotra, N., Lai, Y.-H., Liang, S.-T., Chen, J.-R., Chen, K.H.-C., Hsiao, C.-D., 2020. Nanoplastics cause neurobehavioral impairments, reproductive and oxidative damages, and biomarker responses in zebrafish: throwing up alarms of wide spread health risk of exposure. Int. J. Mol. Sci. 21, 1410. https://doi.org/10.3390/ijms21041410
Schwarzfischer, M., Rogler, G., 2022. The intestinal barrier—shielding the body from nano-and microparticles in our diet. Metabolites 12, 223. https://doi.org/10.3390/metabo12030223
Scott, G.R., Sloman, K.A., 2004. The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat. Toxicol. 68, 369–392. https://doi.org/10.1016/j.aquatox.2004.03.016
Shaalan, W.M., 2024. Hazardous Effects of Heavy Metal Pollution on Histological and Gene Expression Profiles of Nile Tilapia in the Eastern Delta, Egypt Aquatic Ecosystems. https://doi.org/10.21203/rs.3.rs-3960734/v1
Shah, P., Lalan, M., Jani, D., 2021. Toxicological aspects of carbon nanotubes, fullerenes and graphenes. Curr. Pharm. Des. 27, 556–564. https://doi.org/10.2174/1381612826666200916143741
Shahjahan, M., Taslima, K., Rahman, M.S., Al-Emran, M.D., Alam, S.I., Faggio, C., 2022. Effects of heavy metals on fish physiology–a review. Chemosphere 300, 134519. https://doi.org/10.1016/j.chemosphere.2022.134519
Sharma, M., Kant, R., Sharma, A.K., Sharma, A.K., 2024. Exploring the impact of heavy metals toxicity in the aquatic ecosystem. Int. J. Energy Water Resour. 1–14. https://doi.org/10.1007/s42108-024-00284-1
Silva-Cavalcanti, J.S., Silva, J.D.B., de França, E.J., de Araújo, M.C.B., Gusmão, F., 2017. Microplastics ingestion by a common tropical freshwater fishing resource. Environ. Pollut. 221, 218–226. https://doi.org/10.1016/j.envpol.2016.11.068
Singh, N., Poonia, T., Siwal, S.S., Srivastav, A.L., Sharma, H.K., Mittal, S.K., 2022. Challenges of water contamination in urban areas, in: Current Directions in Water Scarcity Research. Elsevier, pp. 173–202. https://doi.org/10.1016/B978-0-323-91838-1.00008-7
Singh, R.N., 2014. Effects of Dimethoate (EC 30%) on gill morphology, oxygen consumption and serum electrolyte levels of common carp, Cyprinus carpio (Linn). Int. J. Sci. Res. Environ. Sci. 2, 192.
Singh, V., Singh, N., Rai, S.N., Kumar, A., Singh, A.K., Singh, M.P., Sahoo, A., Shekhar, S., Vamanu, E., Mishra, V., 2023. Heavy Metal Contamination in the Aquatic Ecosystem: Toxicity and Its Remediation Using Eco-Friendly Approaches. Toxics. https://doi.org/10.3390/toxics11020147
Stanley, J., Preetha, G., Stanley, J., Preetha, G., 2016. Pesticide toxicity to fishes: exposure, toxicity and risk assessment methodologies. Pestic. Toxic. to Non-target Org. Expo. Toxic. Risk Assess. Methodol. 411–497. https://doi.org/10.1007/978-94-017-7752-0_7
Subaramaniyam, U., Allimuthu, R.S., Vappu, S., Ramalingam, D., Balan, R., Paital, B., Panda, N., Rath, P.K., Ramalingam, N., Sahoo, D.K., 2023. Effects of microplastics, pesticides and nano-materials on fish health, oxidative stress and antioxidant defense mechanism. Front. Physiol. 14, 1217666. https://doi.org/10.3389/fphys.2023.1217666
Sule, R.O., Condon, L., Gomes, A. V, 2022. A common feature of pesticides: oxidative stress—the role of oxidative stress in pesticide‐induced toxicity. Oxid. Med. Cell. Longev. 2022, 5563759. https://doi.org/10.1155/2022/5563759
Sutkar, P., Dhulap, V., Girigosavi, S., Deshmukh, S., Desai, M., 2025. Microplastics in the Human Body: A Comprehensive Review of Exposure, Detection, and Health Risks. Wastewater Purification 1 (1), 20250317163738. https://doi.org/10.6084/m9.figshare.28845923
Tumwesigye, E., Nnadozie, C.F., Akamagwuna, F.C., Noundou, X.S., Nyakairu, G.W., Odume, O.N., 2023. Microplastics as vectors of chemical contaminants and biological agents in freshwater ecosystems: Current knowledge status and future perspectives. Environ. Pollut. 330, 121829. https://doi.org/10.1016/j.envpol.2023.121829
Vondráček, J., Machala, M., 2021. The role of metabolism in toxicity of polycyclic aromatic hydrocarbons and their non-genotoxic modes of action. Curr. Drug Metab. 22, 584–595. https://doi.org/10.2174/1389200221999201125205725
Wang, F., Zhou, L., Mu, D., Zhang, H., Zhang, G., Huang, X., Xiong, P., 2024. Current research on ecotoxicity of metal-based nanoparticles: from exposure pathways, ecotoxicological effects to toxicity mechanisms. Front. Public Heal. 12, 1390099. https://doi.org/10.3389/fpubh.2024.1390099
Wang, W., Chen, F., Zhang, L., Wen, F., Yu, Q., Li, P., Zhang, A., 2023. Neurotransmitter disturbances caused by methylmercury exposure: Microbiota-gut-brain interaction. Sci. Total Environ. 873, 162358. https://doi.org/10.1016/j.scitotenv.2023.162358
Yong, S.-S., Lee, J.-I., Kang, D.-H., 2023. TiO2-based photocatalyst Generated Reactive Oxygen Species cause cell membrane disruption of Staphylococcus aureus and Escherichia coli O157: H7. Food Microbiol. 109, 104119. https://doi.org/10.1016/j.fm.2022.104119
Zaheer Ud Din, S., Shah, K., Bibi, N., H. Mahboub, H., Kakakhel, M.A., 2023. Recent Insights into the Silver Nanomaterials: an Overview of Their Transformation in the Food Webs and Toxicity in the Aquatic Ecosystem. Water, Air, Soil Pollut. 234, 114. https://doi.org/10.1007/s11270-023-06134-w
Zhang, J., Guo, W., Li, Q., Wang, Z., Liu, S., 2018. The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environ. Sci. Nano 5, 2482–2499. https://doi.org/10.1039/C8EN00688A
Zhao, H., Qian, H., Cui, J., Ge, Z., Shi, J., Huo, Y., Zhang, Y., Ye, L., 2024. Endocrine toxicity of atrazine and its underlying mechanisms. Toxicology 153846. https://doi.org/10.1080/10807039.2018.1469398

Additional Files
Published
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
License
Copyright (c) 2025 Nishita Narwal, Zahid Anwar, Mian A. Kakakhel (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Author/s 2025 under the terms of the Creative Commons Attribution 4.0 International License.