Ecotoxicological effects of emerging pollutants (nanomaterials and microplastics) on fish biology

Authors

  • Nishita Narwal University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi-110078, India Author
  • Zahid Anwar Jiangxi Key Laboratory of Aquatic Germplasm Innovation and Utilization, School of Life Science, Nanchang University, Nanchang 330031, China Author https://orcid.org/0000-0003-1612-6639
  • Mian A. Kakakhel College of Hydraulic & Environmental Engineering, Three Gorges University, Yichang 443002, Hubei, China Author

Keywords:

Emerging pollutants, Nanotechnology, Microplastic, Fish biology

Abstract

Emerging contaminants, including heavy metals, nanomaterials, microplastics, and industrial chemicals pose significant threats to aquatic ecosystems and fish health. The emerging pollutants are majorly produced during industrial processes, urbanization, and mining. This review study compiled current knowledge on the ecotoxicological effects of these pollutants on fish biology, encompassing physiological, behavioral, and molecular responses. Innovative methodologies have been used to comprehensively assess toxicological responses, such as high-throughput omics, including transcriptomics, proteomics, and metabolomics can elucidate molecular-level disruptions. In addition, advanced bioimaging techniques e.g., micro-CT scanning can assess internal tissue damage caused by pollutants non-invasively. Furthermore, eco-epidemiological models integrating field and laboratory data will enhance predictive risk assessments. Regulatory frameworks must evolve to incorporate sublethal and chronic toxicity endpoints, ensuring more comprehensive environmental protection strategies. Collaborative efforts among researchers, policymakers, and industries are essential to mitigate contamination sources and develop sustainable remediation approaches for aquatic ecosystems.

References

Abbasi, R., Shineh, G., Mobaraki, M., Doughty, S., Tayebi, L., 2023. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. J. Nanoparticle Res. 25, 43. https://doi.org/10.1007/s11051-023-05690-w

Abdal Dayem, A., Hossain, M.K., Lee, S. Bin, Kim, K., Saha, S.K., Yang, G.-M., Choi, H.Y., Cho, S.-G., 2017. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 18, 120. https://doi.org/10.3390/ijms18010120

Ali, H., Khan, E., 2019. Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health. Hum. Ecol. Risk Assess. An Int. J. 25, 1353–1376. https://doi.org/10.1080/10807039.2018.1469398

Amir, S., Shah, S.T.A., Mamoulakis, C., Docea, A.O., Kalantzi, O.-I., Zachariou, A., Calina, D., Carvalho, F., Sofikitis, N., Makrigiannakis, A., 2021. Endocrine disruptors acting on estrogen and androgen pathways cause reproductive disorders through multiple mechanisms: a review. Int. J. Environ. Res. Public Health 18, 1464. https://doi.org/10.3390/ijerph18041464

Angelier, F., 2022. Consequences of developmental exposure to pollution: importance of stress-coping mechanisms, in: Development Strategies and Biodiversity: Darwinian Fitness and Evolution in the Anthropocene. Springer, pp. 283–316. https://doi.org/10.1007/978-3-030-90131-8_9

Apte, U., Krishnamurthy, P., 2010. Detoxification functions of the liver, in: Molecular Pathology of Liver Diseases. Springer, pp. 147–163. https://doi.org/10.1007/978-1-4419-7107-4_11

Audira, G., Ngoc Anh, N.T., Ngoc Hieu, B.T., Malhotra, N., Siregar, P., Villalobos, O., Villaflores, O.B., Ger, T.-R., Huang, J.-C., Chen, K.H.-C., 2020. Evaluation of the adverse effects of chronic exposure to donepezil (an acetylcholinesterase inhibitor) in adult zebrafish by behavioral and biochemical assessments. Biomolecules 10, 1340. https://doi.org/10.3390/biom10091340

Ayanda, O.S., Mmuoegbulam, A.O., Okezie, O., Durumin Iya, N.I., Mohammed, S.E., James, P.H., Muhammad, A.B., Unimke, A.A., Alim, S.A., Yahaya, S.M., 2024. Recent progress in carbon-based nanomaterials: critical review. J. Nanoparticle Res. 26, 106. https://doi.org/10.1007/s11051-024-06006-2

Bashir, I., Lone, F.A., Bhat, R.A., Mir, S.A., Dar, Z.A., Dar, S.A., 2020. Concerns and threats of contamination on aquatic ecosystems. Bioremediation Biotechnol. Sustain. approaches to Pollut. Degrad. 1–26. https://doi.org/10.1007/978-3-030-35691-0_1

Benedetti, M., Giuliani, M.E., Regoli, F., 2015. Oxidative metabolism of chemical pollutants in marine organisms: molecular and biochemical biomarkers in environmental toxicology. Ann. N. Y. Acad. Sci. 1340, 8–19. https://doi.org/10.1111/nyas.12698

Bevacqua, E., Occhiuzzi, M.A., Grande, F., Tucci, P., 2023. TiO2-NPs toxicity and safety: an update of the findings published over the last six years. Mini Rev. Med. Chem. 23, 1050–1057.

Bhagat, J., Nishimura, N., Shimada, Y., 2021. Toxicological interactions of microplastics/nanoplastics and environmental contaminants: current knowledge and future perspectives. J. Hazard. Mater. 405, 123913. https://doi.org/10.1016/j.jhazmat.2020.123913

Boota, M.W., Soomro, S., Xia, H., Qin, Y., Kakakhel, M.A., Yan, C., Weiran, L., Xu, J., 2024. Distribution and bioaccumulation of trace elements in two Cyprinidae fish species in the Indus river, Pakistan, including the impact of hydraulic structure on macroinvertebrates’ biodiversity. Environ. Res. 252, 118882. https://doi.org/https://doi.org/10.1016/j.envres.2024.118882

Bramatti, I., Matos, B., Figueiredo, N., Pousão-Ferreira, P., Branco, V., Martins, M., 2023. Interaction of Polycyclic Aromatic Hydrocarbon compounds in fish primary hepatocytes: From molecular mechanisms to genotoxic effects. Sci. Total Environ. 855, 158783. https://doi.org/10.1016/j.scitotenv.2022.158783

Chen, P., Huang, J., Rao, L., Zhu, W., Yu, Y., Xiao, F., Chen, X., Yu, H., Wu, Y., Xu, K., Pubo, C., Jie, H., Liuyu, R., Wengen, Z., Yuhe, Y., Fanshu, X., Xiaojuan, C., Huang, Y., Yongjie, W., Kui, X., Xiafei, Z., Ruiwen, H., Zhili, H., Qingyun, Y., Rosie, A., 2021. Resistance and resilience of fish gut microbiota to silver nanoparticles. mSystems 6, e00630-21. https://doi.org/10.1128/mSystems.00630-21

Chmiel, J.A., Daisley, B.A., Pitek, A.P., Thompson, G.J., Reid, G., 2020. Understanding the effects of sublethal pesticide exposure on honey bees: a role for probiotics as mediators of environmental stress. Front. Ecol. Evol. 8, 22. https://doi.org/10.1007/s13592-021-00879-1

Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., Galloway, T.S., 2013. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47, 6646.

Córdoba-Tovar, L., Marrugo-Negrete, J., Barón, P.R., Díez, S., 2022. Drivers of biomagnification of Hg, As and Se in aquatic food webs: a review. Environ. Res. 204, 112226. https://doi.org/10.1016/j.envres.2021.112226

Curcio, V., Macirella, R., Sesti, S., Ahmed, A.I.M., Talarico, F., Tagarelli, A., Mezzasalma, M., Brunelli, E., 2022. Morphological and functional alterations induced by two ecologically relevant concentrations of Lead on Danio rerio gills. Int. J. Mol. Sci. 23, 9165. https://doi.org/10.3390/ijms23169165

Das, A., 2023. The emerging role of microplastics in systemic toxicity: Involvement of reactive oxygen species (ROS). Sci. Total Environ. 895, 165076. https://doi.org/10.1016/j.scitotenv.2023.165076

Das, B.K., Roy, S., Kumar, V., Adhikari, A., Ganguly, S., Bisai, K., 2025. Modulation of immune gene expression profile in Labeo catla with chronic toxicity to emerging endocrine disruptors through a multiorgan approach. Sci. Rep. 15, 11244. https://doi.org/10.1038/s41598-025-95996-7

Deng, R., Lin, D., Zhu, L., Majumdar, S., White, J.C., Gardea-Torresdey, J.L., Xing, B., 2017. Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology 11, 591–612.

Ding, R., Ma, Y., Li, T., Sun, M., Sun, Z., Duan, J., 2023. The detrimental effects of micro-and nano-plastics on digestive system: An overview of oxidative stress-related adverse outcome pathway. Sci. Total Environ. 878, 163144. https://doi.org/10.1016/j.scitotenv.2023.163144

Ding, T., Wei, L., Hou, Z., Li, J., Zhang, C., Lin, D., 2022. Microplastics altered contaminant behavior and toxicity in natural waters. J. Hazard. Mater. 425, 127908. https://doi.org/10.1016/j.jhazmat.2021.127908

Emenike, E.C., Iwuozor, K.O., Anidiobi, S.U., 2022. Heavy metal pollution in aquaculture: sources, impacts and mitigation techniques. Biol. Trace Elem. Res. 1–17. https://doi.org/10.1007/s12011-021-03037-x

Farag, M.R., Alagawany, M., Bilal, R.M., Gewida, A.G.A., Dhama, K., Abdel-Latif, H.M.R., Amer, M.S., Rivero-Perez, N., Zaragoza-Bastida, A., Binnaser, Y.S., 2021. An overview on the potential hazards of pyrethroid insecticides in fish, with special emphasis on cypermethrin toxicity. Animals 11, 1880. https://doi.org/10.3390/ani11071880

Garai, P., Banerjee, P., Mondal, P., Saha, N.C., 2021. Effect of heavy metals on fishes: Toxicity and bioaccumulation. J Clin Toxicol. S 18.

Gauthier, J., Lavoie, C., Charette, S.J., Derome, N., 2019. Host-microbiota interactions and their importance in promoting growth and resistance to opportunistic diseases in salmonids. Microb. Communities Aquac. Ecosyst. Improv. Product. Sustain. 21–50. https://doi.org/10.1007/978-3-030-16190-3_2

Godswill, A.C., Godspel, A.C., 2019. Physiological effects of plastic wastes on the endocrine system (Bisphenol A, Phthalates, Bisphenol S, PBDEs, TBBPA). Int. J. Bioinforma. Comput. Biol. 4, 11–29.

Gupta, R.C., Malik, J.K., Milatovic, D., 2011. Organophosphate and carbamate pesticides, in: Reproductive and Developmental Toxicology. Elsevier, pp. 471–486. https://doi.org/10.1016/B978-0-12-382032-7.10037-2

Gwenzi, W., Chaukura, N., 2018. Organic contaminants in African aquatic systems: current knowledge, health risks, and future research directions. Sci. Total Environ. 619, 1493–1514. https://doi.org/10.1016/j.scitotenv.2017.11.121

Jabeen, K., Su, L., Li, J., Yang, D., Tong, C., Mu, J., Shi, H., 2017. Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environ. Pollut. 221, 141–149. https://doi.org/10.1016/j.envpol.2016.11.055

Jomova, K., Makova, M., Alomar, S.Y., Alwasel, S.H., Nepovimova, E., Kuca, K., Rhodes, C.J., Valko, M., 2022. Essential metals in health and disease. Chem. Biol. Interact. 367, 110173. https://doi.org/10.1016/j.cbi.2022.110173

Jomova, K., Raptova, R., Alomar, S.Y., Alwasel, S.H., Nepovimova, E., Kuca, K., Valko, M., 2023. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 97, 2499–2574. https://doi.org/10.1007/s00204-023-03562-9

Kakakhel, M.A., Bibi, N., Mahboub, H.H., Wu, F., Sajjad, W., Din, S.Z.U., Hefny, A.A., Wang, W., 2023a. Influence of biosynthesized nanoparticles exposure on mortality, residual deposition, and intestinal bacterial dysbiosis in Cyprinus carpio. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 263, 109473. https://doi.org/https://doi.org/10.1016/j.cbpc.2022.109473

Kakakhel, M.A., Narwal, N., Kataria, N., Johari, S.A., Zaheer Ud Din, S., Jiang, Z., Khoo, K.S., Xiaotao, S., 2023b. Deciphering the dysbiosis caused in the fish microbiota by emerging contaminants and its mitigation strategies-A review. Environ. Res. 237, 117002. https://doi.org/https://doi.org/10.1016/j.envres.2023.117002

Kakakhel, M.A., Wu, F., Feng, H., Hassan, Z., Ali, I., Saif, I., Zaheer Ud Din, S., Wang, W., 2021. Biological synthesis of silver nanoparticles using animal blood, their preventive efficiency of bacterial species, and ecotoxicity in common carp fish. Microsc. Res. Tech. n/a. https://doi.org/https://doi.org/10.1002/jemt.23733

Kodavanti, U.P., Jackson, T.W., Henriquez, A.R., Snow, S.J., Alewel, D.I., Costa, D.L., 2023. Air Pollutant impacts on the brain and neuroendocrine system with implications for peripheral organs: a perspective. Inhal. Toxicol. 35, 109–126. https://doi.org/10.1080/08958378.2023.2172486

Kumar, N., Priyadarshi, H., Parhi, J., Pandey, P.K., Kumar, D., 2025. Acute toxicity of mercury in response to metallothionein expression and oxidative and cellular metabolic stress in Barbonymus gonionotus. Sci. Rep. 15, 12022. https://doi.org/10.1038/s41598-025-95697-1

Lima, C., Falcão, M.A.P., Rosa, J.G.S., Disner, G.R., Lopes-Ferreira, M., 2022. Pesticides and their impairing effects on epithelial barrier integrity, dysbiosis, disruption of the AhR signaling pathway and development of immune-mediated inflammatory diseases. Int. J. Mol. Sci. 23, 12402. https://doi.org/10.3390/ijms232012402

Liu, D., Shi, Q., Liu, C., Sun, Q., Zeng, X., 2023. Effects of endocrine-disrupting heavy metals on human health. Toxics 11, 322. https://doi.org/10.3390/toxics11040322

Macneale, K.H., Kiffney, P.M., Scholz, N.L., 2010. Pesticides, aquatic food webs, and the conservation of Pacific salmon. Front. Ecol. Environ. 8, 475–482. https://doi.org/10.1890/090142

Mahjoubian, M., Naeemi, A.S., Moradi-Shoeili, Z., Tyler, C.R., Mansouri, B., 2023. Oxidative stress, genotoxic effects, and other damages caused by chronic exposure to silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs), and their mixtures in zebrafish (Danio rerio). Toxicol. Appl. Pharmacol. 472, 116569. https://doi.org/10.1016/j.taap.2023.116569

Meng, X., Zheng, X., Mai, W., Gao, J., Fan, Y., Fu, J., Xu, J., 2025. Micro-and nanoplastics differ in particle-mucus interactions: The sight on rheological properties, barrier dysfunction and microbiota dysbiosis. J. Hazard. Mater. 492, 138130. https://doi.org/10.1016/j.jhazmat.2025.138130

Narwal, N., Kakakhel, M.A., 2025. Assessing microplastics in aquatic ecosystem: Sources, effects, and nature-based solution. A review. Reg. Stud. Mar. Sci. 104030. https://doi.org/10.1016/j.rsma.2025.104030

Narwal, N., Kakakhel, M.A., Katyal, D., Yadav, S., Rose, P.K., Rene, E.R., Rakib, M.R.J., Khoo, K.S., Kataria, N., 2024. Interactions Between Microplastic and Heavy Metals in the Aquatic Environment: Implications for Toxicity and Mitigation Strategies. Water, Air, Soil Pollut. 235, 567. https://doi.org/10.1007/s11270-024-07343-7

Narwal, N., Katyal, D., 2024. The abundance and analytical characterization of microplastics in the surface water of Haryana, India. Microsc. Res. Tech. n/a. https://doi.org/https://doi.org/10.1002/jemt.24657

Nguyen, M.-K., Rakib, M.R.J., Lin, C., Hung, N.T.Q., Le, V.-G., Nguyen, H.-L., Malafaia, G., Idris, A.M., 2023. A comprehensive review on ecological effects of microplastic pollution: An interaction with pollutants in the ecosystems and future perspectives. TrAC Trends Anal. Chem. 168, 117294. https://doi.org/10.1016/j.trac.2023.117294

Notariale, R., Infantino, R., Palazzo, E., Manna, C., 2021. Erythrocytes as a model for heavy metal-related vascular dysfunction: the protective effect of dietary components. Int. J. Mol. Sci. 22, 6604. https://doi.org/10.3390/ijms22126604

Okwuosa, O.B., Eyo, J.E., Omovwohwovie, E.E., 2019. Role of fish as bioindicators: A Review. Iconic Res. Eng. J 2, 1456–8880.

Oros, A., 2025. Bioaccumulation and trophic transfer of heavy metals in marine fish: Ecological and ecosystem-level impacts. J. Xenobiotics 15, 59. https://doi.org/10.3390/jox15020059

Ozougwu, J.C., 2016. The role of reactive oxygen species and antioxidants in oxidative stress. Int. J. Res. 1, 1–8.

Padmanaban, S., Pully, D., Samrot, A. V, Gosu, V., Sadasivam, N., Park, I.-K., Radhakrishnan, K., Kim, D.-K., 2023. Rising influence of nanotechnology in addressing oxidative stress-related liver disorders. Antioxidants 12, 1405. https://doi.org/10.3390/antiox12071405

Parida, L., Patel, T.N., 2023. Systemic impact of heavy metals and their role in cancer development: a review. Environ. Monit. Assess. 195, 766. https://doi.org/10.1007/s10661-023-11399-z

Pereira, S.P.P., Boyle, D., Nogueira, A.J.A., Handy, R.D., 2023. Comparison of toxicity of silver nanomaterials and silver nitrate on developing zebrafish embryos: Bioavailability, osmoregulatory and oxidative stress. Chemosphere 336, 139236. https://doi.org/10.1016/j.chemosphere.2023.139236

Pitt, J.A., Kozal, J.S., Jayasundara, N., Massarsky, A., Trevisan, R., Geitner, N., Wiesner, M., Levin, E.D., Di Giulio, R.T., 2018. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio). Aquat. Toxicol. 194, 185–194. https://doi.org/10.1016/j.aquatox.2017.11.017

Poulsen, A., Escher, B., 2012. Chemically induced immunosuppression and disease susceptibility in marine wildlife: A literature review. Entox. Natl. Res. Cent. Environ. Toxicol. Univ. Queensl. 110.

Ray, S., Shaju, S.T., 2023. Bioaccumulation of pesticides in fish resulting toxicities in humans through food chain and forensic aspects. Environ. Anal. Heal. Toxicol. 38, e2023017. 10.5620/eaht.2023017

Rochman, C.M., Kross, S.M., Armstrong, J.B., Bogan, M.T., Darling, E.S., Green, S.J., Smyth, A.R., Veríssimo, D., 2015. Scientific evidence supports a ban on microbeads. https://doi.org/10.1021/acs.est.5b03909

Rohwäder, M., Jeltsch, F., 2022. Foraging personalities modify effects of habitat fragmentation on biodiversity. Oikos 2022, e09056. https://doi.org/10.1111/oik.09056

Roy, R., Kumar, S., Tripathi, A., Das, M., Dwivedi, P.D., 2014. Interactive threats of nanoparticles to the biological system. Immunol. Lett. 158, 79–87. https://doi.org/10.1016/j.imlet.2013.11.019

Sabra, F.S., Mehana, E.-S.E.-D., 2015. Pesticides toxicity in fish with particular reference to insecticides. Asian J. Agric. Food Sci. 3.

Saikumar, S., Mani, R., Ganesan, M., Dhinakarasamy, I., Palanisami, T., Gopal, D., 2024. Trophic transfer and their impact of microplastics on estuarine food chain model. J. Hazard. Mater. 464, 132927. https://doi.org/10.1016/j.jhazmat.2023.132927

Saket, R.D., 2022. Chapter-2 Impact of Heavy Metal Pollutant on Fishes. Adv. Fish. Aquat. Sci. 13.

Sarasamma, S., Audira, G., Siregar, P., Malhotra, N., Lai, Y.-H., Liang, S.-T., Chen, J.-R., Chen, K.H.-C., Hsiao, C.-D., 2020. Nanoplastics cause neurobehavioral impairments, reproductive and oxidative damages, and biomarker responses in zebrafish: throwing up alarms of wide spread health risk of exposure. Int. J. Mol. Sci. 21, 1410. https://doi.org/10.3390/ijms21041410

Schwarzfischer, M., Rogler, G., 2022. The intestinal barrier—shielding the body from nano-and microparticles in our diet. Metabolites 12, 223. https://doi.org/10.3390/metabo12030223

Scott, G.R., Sloman, K.A., 2004. The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat. Toxicol. 68, 369–392. https://doi.org/10.1016/j.aquatox.2004.03.016

Shaalan, W.M., 2024. Hazardous Effects of Heavy Metal Pollution on Histological and Gene Expression Profiles of Nile Tilapia in the Eastern Delta, Egypt Aquatic Ecosystems. https://doi.org/10.21203/rs.3.rs-3960734/v1

Shah, P., Lalan, M., Jani, D., 2021. Toxicological aspects of carbon nanotubes, fullerenes and graphenes. Curr. Pharm. Des. 27, 556–564. https://doi.org/10.2174/1381612826666200916143741

Shahjahan, M., Taslima, K., Rahman, M.S., Al-Emran, M.D., Alam, S.I., Faggio, C., 2022. Effects of heavy metals on fish physiology–a review. Chemosphere 300, 134519. https://doi.org/10.1016/j.chemosphere.2022.134519

Sharma, M., Kant, R., Sharma, A.K., Sharma, A.K., 2024. Exploring the impact of heavy metals toxicity in the aquatic ecosystem. Int. J. Energy Water Resour. 1–14. https://doi.org/10.1007/s42108-024-00284-1

Silva-Cavalcanti, J.S., Silva, J.D.B., de França, E.J., de Araújo, M.C.B., Gusmão, F., 2017. Microplastics ingestion by a common tropical freshwater fishing resource. Environ. Pollut. 221, 218–226. https://doi.org/10.1016/j.envpol.2016.11.068

Singh, N., Poonia, T., Siwal, S.S., Srivastav, A.L., Sharma, H.K., Mittal, S.K., 2022. Challenges of water contamination in urban areas, in: Current Directions in Water Scarcity Research. Elsevier, pp. 173–202. https://doi.org/10.1016/B978-0-323-91838-1.00008-7

Singh, R.N., 2014. Effects of Dimethoate (EC 30%) on gill morphology, oxygen consumption and serum electrolyte levels of common carp, Cyprinus carpio (Linn). Int. J. Sci. Res. Environ. Sci. 2, 192.

Singh, V., Singh, N., Rai, S.N., Kumar, A., Singh, A.K., Singh, M.P., Sahoo, A., Shekhar, S., Vamanu, E., Mishra, V., 2023. Heavy Metal Contamination in the Aquatic Ecosystem: Toxicity and Its Remediation Using Eco-Friendly Approaches. Toxics. https://doi.org/10.3390/toxics11020147

Stanley, J., Preetha, G., Stanley, J., Preetha, G., 2016. Pesticide toxicity to fishes: exposure, toxicity and risk assessment methodologies. Pestic. Toxic. to Non-target Org. Expo. Toxic. Risk Assess. Methodol. 411–497. https://doi.org/10.1007/978-94-017-7752-0_7

Subaramaniyam, U., Allimuthu, R.S., Vappu, S., Ramalingam, D., Balan, R., Paital, B., Panda, N., Rath, P.K., Ramalingam, N., Sahoo, D.K., 2023. Effects of microplastics, pesticides and nano-materials on fish health, oxidative stress and antioxidant defense mechanism. Front. Physiol. 14, 1217666. https://doi.org/10.3389/fphys.2023.1217666

Sule, R.O., Condon, L., Gomes, A. V, 2022. A common feature of pesticides: oxidative stress—the role of oxidative stress in pesticide‐induced toxicity. Oxid. Med. Cell. Longev. 2022, 5563759. https://doi.org/10.1155/2022/5563759

Sutkar, P., Dhulap, V., Girigosavi, S., Deshmukh, S., Desai, M., 2025. Microplastics in the Human Body: A Comprehensive Review of Exposure, Detection, and Health Risks. Wastewater Purification 1 (1), 20250317163738. https://doi.org/10.6084/m9.figshare.28845923

Tumwesigye, E., Nnadozie, C.F., Akamagwuna, F.C., Noundou, X.S., Nyakairu, G.W., Odume, O.N., 2023. Microplastics as vectors of chemical contaminants and biological agents in freshwater ecosystems: Current knowledge status and future perspectives. Environ. Pollut. 330, 121829. https://doi.org/10.1016/j.envpol.2023.121829

Vondráček, J., Machala, M., 2021. The role of metabolism in toxicity of polycyclic aromatic hydrocarbons and their non-genotoxic modes of action. Curr. Drug Metab. 22, 584–595. https://doi.org/10.2174/1389200221999201125205725

Wang, F., Zhou, L., Mu, D., Zhang, H., Zhang, G., Huang, X., Xiong, P., 2024. Current research on ecotoxicity of metal-based nanoparticles: from exposure pathways, ecotoxicological effects to toxicity mechanisms. Front. Public Heal. 12, 1390099. https://doi.org/10.3389/fpubh.2024.1390099

Wang, W., Chen, F., Zhang, L., Wen, F., Yu, Q., Li, P., Zhang, A., 2023. Neurotransmitter disturbances caused by methylmercury exposure: Microbiota-gut-brain interaction. Sci. Total Environ. 873, 162358. https://doi.org/10.1016/j.scitotenv.2023.162358

Yong, S.-S., Lee, J.-I., Kang, D.-H., 2023. TiO2-based photocatalyst Generated Reactive Oxygen Species cause cell membrane disruption of Staphylococcus aureus and Escherichia coli O157: H7. Food Microbiol. 109, 104119. https://doi.org/10.1016/j.fm.2022.104119

Zaheer Ud Din, S., Shah, K., Bibi, N., H. Mahboub, H., Kakakhel, M.A., 2023. Recent Insights into the Silver Nanomaterials: an Overview of Their Transformation in the Food Webs and Toxicity in the Aquatic Ecosystem. Water, Air, Soil Pollut. 234, 114. https://doi.org/10.1007/s11270-023-06134-w

Zhang, J., Guo, W., Li, Q., Wang, Z., Liu, S., 2018. The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environ. Sci. Nano 5, 2482–2499. https://doi.org/10.1039/C8EN00688A

Zhao, H., Qian, H., Cui, J., Ge, Z., Shi, J., Huo, Y., Zhang, Y., Ye, L., 2024. Endocrine toxicity of atrazine and its underlying mechanisms. Toxicology 153846. https://doi.org/10.1080/10807039.2018.1469398

pollutants

Additional Files

Published

16-06-2025

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

How to Cite

Narwal, N. ., Anwar, Z. ., & A. Kakakhel, M. (2025). Ecotoxicological effects of emerging pollutants (nanomaterials and microplastics) on fish biology. Animal Reports, 1(1), 60-74. https://animalreportsjournal.com/index.php/arj/article/view/11